E-polirovka.ru


0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Жаропрочная сталь до 1500 градусов

Марки жаропрочных сталей и вся информация о них

Различные марки жаропрочных и жаростойких сталей и сплавов признаются лучшим материалом для изготовления конструкций, функционирующих в особо сложных и агрессивных средах.

1 Жаростойкие сплавы и стали – что это?

Окалиностойкость, иначе называемая жаростойкостью, представляет собой способность тех или иных сплавов либо металлов противостоять на протяжении длительного времени при повышенных температурах газовой коррозии. А под жаропрочностью понимают способность металлических материалов не поддаваться разрушению и пластической деформации при высоких температурных режимах работы.

Ненагруженные конструкции, которые применяются при температурах в районе +550 °С в газовой окислительной атмосфере, обычно изготавливаются из жаростойких металлов. К указанным изделиям часто относят элементы нагревательных печей. Сплавы на базе железа при температурах выше указанных 550 градусов склонны к активному окислению, в результате коего на их поверхности формируется оксид феррума. Это соединение характеризуется элементарной кристаллической решеткой с недостатком атомов кислорода, что приводит к появлению окалины хрупкого типа.

Увеличить жаростойкость стали удается тогда, когда в нее вводят такие элементы, как кремний, хром, алюминий.

Они способны создавать с кислородом совершенно другие решетки – с очень плотным и надежным строением. Уровень легированности композиции (количество требуемых добавок) подбирают с учетом температуры, при которой планируется применять изделие, изготовленные из него.

Максимальная жаростойкость присуща материалам на базе никеля (сильхромам). К таковым, в частности, относят следующие марки стали:

  • 36Х18Н25С2;
  • 15Х25Т;
  • 08Х17Т;
  • 15Х6СЮ.

Вообще, жаростойкость сталей будет тем выше, чем больше в них имеется хрома. Некоторые марки стальных композиций способны без ухудшения своих начальных свойств работать даже при температурах в районе 1150 °С.

2 Жаропрочные сплавы и стали – что они собой представляют?

Марки таких сталей идеальны для производства изделий, функционирующих в условиях, когда присутствует явление ползучести и, естественно, повышенные температуры. Ползучестью называют склонность металла к медленной деформации (пластической) при неизменной температуре под влиянием постоянной нагрузки.

Жаропрочность сплавов зависит от вида имеющейся ползучести, которая может быть:

  • длительной;
  • кратковременной.

Последняя устанавливается в ходе специально проводимых анализов на растяжение изделий. Обследования осуществляются в течение непродолжительного времени при заранее заданной температуре в нагревательной печи.

А длительная ползучесть определяется, как вы сами понимаете, на протяжении большего времени воздействия на сталь. И в данном случае главное значение имеет величина предела ползучести – наибольшее напряжение, вызывающее разрушение испытуемого изделия при конкретном времени воздействия и температуре.

3 Марки жаростойких и жаропрочных сталей – классификация и описание

По состоянию своей структуры такие сплавы бывают:

  • мартенситно-ферритными;
  • перлитными;
  • аустенитными;
  • мартенситными.

А жаростойкие сплавы дополнительно подразделяются еще на:

  • аустенитно-ферритные или мартенситные;
  • ферритные.

Известны следующие марки мартенситных сталей:

  • 3Х13Н7С2 и 4Х9С2 (используются при температурах 850–950° в клапанах автодвигателей);
  • Х5М, 1Х12H2ВМФ, 1Х8ВФ, Х6СМ, Х5ВФ (применяются для производства узлов и разнообразных деталей, работающих в течение 1000–10000 часов при температурах от 500 до 600°);
  • Х5 (из них делают трубы для использования при температурах не более 650°);
  • 1Х8ВФ (применяются для изготовления компонентов паровых турбин, функционируют без потери свойств в течение 10000 часов и более при температуре до 500°).

Мартенситные сплавы получаются из перлитных при повышении в последних количества хрома. Непосредственно к перлитным относят следующие жаростойкие и жаропрочные стали: Х13Н7С2, Х7СМ, Х9С2, Х10С2М, Х6СМ, Х6С (то есть все виды хромомолибденовых и хромокремнистых составов). Их закаливают при температурах 950–1100 градусов, а затем (при 8100 градусах) выполняют отпуск стали, что позволяет получить твердые материалы (по шкале HRC – не менее 25 единиц) со структурой сорбита.

Жаростойкие ферритные стали имеют мелкозернистую структуру после их отжига и термообработки. В таких композициях присутствует от 25 до 33 процентов хрома. Используются они для пиролизного оборудования и теплообменников. К ферритным сталям относят далее указанные марки: Х28, Х18СЮ, Х17, Х25Т, 0Х17Т, 1Х12СЮ. Отметим, что их нельзя нагревать более 850 градусов, так как в этом случае изделия станут хрупкими за счет своей крупнозернистой структуры.

Мартенситно-ферритные сплавы хорошо зарекомендовали себя при производстве машиностроительных деталей, которые планируется использовать при 600° на протяжении существенного времени. Такие жаропрочные стали (1Х13, 1Х12В2МФ, 1Х12ВНМФ, Х6СЮ, 2Х12ВМБФР, 1Х11МФ) легируются молибденом, вольфрамом, ванадием, а хрома в них, как правило, содержится от 10 до 14 процентов.

4 Аустенитно-ферритные и аустенитные жаростойкие сплавы

Наибольшей востребованностью пользуются аустенитные стали, структура коих обеспечивается наличием никеля, а жаростойкость – наличием хрома. В подобных композициях иногда встречаются незначительные включения ниобия и титана, углерода в них очень мало. Аустенитные марки при температурах до 1000° успешно противостоят процессу появления окалины и при этом относятся к группе антикоррозионных сталей.

Сейчас чаще всего предприятия используют описываемые материалы, относимые к дисперсионно-твердеющей категории. Их делят на два вида в зависимости от варианта применяемого упрочнителя – интерметаллического либо карбидного. Именно процедура упрочнения придает аустенитным сталям особые свойства, так востребованные промышленностью. Известные сплавы данной группы:

  • дисперсионно-твердеющие: 0Х14Н28В3Т3ЮР, Х12Н20Т3Р, 4Х12Н8Г8МФБ, 4Х14Н14В2М (оптимальны для изготовления клапанов двигателей транспортных средств и деталей турбин);
  • гомогенные: 1Х14Н16Б, Х25Н20C2, Х23Н18, Х18Н10T, Х25Н16Г7АР, Х18Н12T, 1Х14Н18В2Б (указанные марки находят свое применение в сфере выпуска арматуры и труб, работающих при больших нагрузках, элементов выхлопных систем, агрегатов сверхвысокого давления).

Аустенитно-ферритные сплавы имеют очень высокую жаропрочность, которая намного больше обычных высокохромистых материалов. Достигается это за счет уникальной стабильности их строения. Такие марки стали нельзя применять для производства нагруженных компонентов из-за их повышенной хрупкости. Зато они прекрасно подходят для изготовления изделий, функционирующих при температурах близких к 1150 °С:

  • пирометрических трубок (марка – Х23Н13);
  • печных конвейеров, труб, емкостей для цементации (Х20Н14С2 и 0Х20Н14С2).

5 Тугоплавкие сплавы и металлы

В тех случаях, когда требуется изготовить детали, которые смогут применяться при температурах от 1000 до 2000 градусов, используются стали на основе тугоплавким металлов. К ним относят элементы, характеризуемые следующими температурами плавления (в градусах):

  • 3410 – вольфрам;
  • около 3000 – тантал;
  • 2415 – ниобий;
  • 1900 – ванадий;
  • 1855 – цирконий;
  • 3180 – рений;
  • около 2600 – молибден;
  • почти 2000 – гафний.

Данные металлы деформируются (пластически) при нагреве, что обусловлено высокой температурой их изменения в хрупкое состояние. При нагреве до величин рекристаллизации формируется волокнистая структура тугоплавких металлов и наклеп. Показатель жаропрочности таких материалов обычно увеличивают привнесением специальных добавок. А их защита при температурах более 1000 градусов от окисления обычно выполняется легированием с использованием молибдена, тантала, титана и других элементов.

Часто используются тугоплавкие сплавы с такими составами:

  • 30 % рения + вольфрам;
  • 40 % ниобия + 60 % ванадия;
  • 48 % железа + 1 % циркония + 5 % молибдена + 15 % ниобия;
  • 10 % вольфрама + тантал.

6 Особенности сталей на основе никеля и системы железо-никель

Указанные сплавы, жаростойкость и жаропрочность которых очень высока, имеют в своем составе свыше 55 % никеля и более 65 % комплекса никель + железо. Базовым элементом в обоих видах композиций при этом является хром (его содержится от 14 до 23 %).

Более высокие показатели стойкости и прочности при повышенных температурах демонстрируют стали на основе никеля: ХН60В, ХН75МБТЮ, ХН60Ю, ХН78Т (жаропрочные) и ХН77ТЮ, ХН70МВТЮБ, ХН70ВМЮ, ХН70, ХН67ВМТЮ (жаростойкие). Обусловлен сей факт процессом формирования на их поверхности при высоких температурах оксидной алюминиевой и хромовой пленки, а также (в твердых растворах) – соединений алюминия и никеля, титана и никеля.

В никелевых сплавах из-за несущественного содержания в них углерода никогда не появляются карбиды. А их упрочнение – это последствие твердения, характеризуемого дисперсной природой, после выполнения термообработки. Под такой обработкой понимают:

  • создание твердой однородной композиции никеля и легирующих добавок;
  • следующее за этим старение металла (температура процесса – около 750 градусов, иногда — 800).

В процессе распада твердого пересыщенного состава формируются металлические упрочняющие компоненты, которые существенно увеличивают показатель жаропрочности стали и ее сопротивляемость деформациям.

Читать еще:  Просечно вытяжная сталь ГОСТ 8706 88 сортамент

Назначение и марки сталей с никелем, с никелем и железом:

  • составляющие газовых конструкций – ХН35ВМТЮ;
  • элементы турбин – ХН35ВТР;
  • диски и лопатки компрессоров – ХН35ВТЮ;
  • роторы турбин – ХН35ВТ, ХН35ВМТ.

Жаропрочные стали

Жаропрочные стали сегодня встречаются крайне часто, так как могут использоваться в условиях контакта с агрессивными средами. Типичные изделия, которые изготавливаются из жаропрочных современных сталей: камины и печи, а также котлы и дымоходы. Рассмотрим особенности подобного металла подробнее.

Основные характеристики

Жаропрочные стали и сплавы могут использоваться для изготовления изделий, которые могут эксплуатироваться при воздействии высоких температур. Обычные стали при воздействии агрессивной среды могут медленно деформироваться, так как воздействие повышенной температуры становится причиной повышения пластичности.

Для того чтобы определить характеристики жаропрочной стали проводятся специальные испытания, особенностями которых можно назвать нижеприведенные моменты:

  1. Жаропрочные стали размещают в печи, после чего нагревают до определенной температуры.
  2. На помещенный сплав оказывается растягивающая нагрузка.

Среди других особенностей отметим следующие моменты:

  1. Высокую жаростойкость. Даже при длительном воздействии высокой температуры основные эксплуатационные качества сплава остаются неизменными.
  2. Прочность к механическому воздействию. При этом металл может сохранять длительную прочность при температурах, которые в иных случаях становятся причиной перестроения кристаллической сетки и изменения основных качеств.
  3. Химический состав сплава также остается неизменным несмотря на воздействие агрессивной среды. Некоторые жаропрочные стали способны выдерживать воздействие агрессивной среды, представленной газами, кислотами и другими веществами.
  4. Низкий показатель прокаливаемости и свариваемости создает довольно много проблем при изготовлении деталей путем сварки.
  5. При добавлении хрома и некоторых других легирующих элементов материал становится коррозионностойким.

По тому, сколько жаропрочная сталь может выдерживать воздействие рабочей среды выделяют две категории:

  1. Стали жаропрочные длительного нагрева. Подобный материал может выдерживать длительное воздействие, но при этом температура зачастую не достигает критических значений. Примером можно назвать трубы, которые применяются для транспортировки различной среды
  2. Стали жаропрочные кратковременного нагрева применяются в случае стремительного скачка температуры, значение которой может составлять несколько тысяч градусов Цельсия.

Жаростойкая сталь не подвержены деформации и разрушению по причине необычного химического состава. Именно поэтому основная классификация проводится по концентрации определенных легированных элементов.

Виды жаропрочных сталей

Жаропрочная нержавеющая сталь классифицируется по состоянию внутренней структуры:

  1. Перлитные.
  2. Мартенситные.
  3. Аустенитные.
  4. Мартенситно-ферритные.

Кроме этого все жаропрочные стали марки разделяются на следующие категории:

  1. Ферритные.
  2. Аустеннитно-ферритные.

Рассматривая мартенситные жаропрочные стали можно выделить следующе сплавы:

  1. Х5 применяется для производства трубы, которая будет эксплуатироваться для подачи среды, температура которой не будет превышать 650 градусов Цельсия.
  2. Х5М или Х6СМ могут использоваться для производстве деталей, эксплуатация которых проводится при температуре от 500 до 600 градусов Цельсия. Стоит учитывать, что подобные марки жаропрочных сталей доступны для недлительной эксплуатации.
  3. 4Х9С2 и 3Х13Н7С2 предназначены для эксплуатации при температуре до 950 градусов Цельсия. Стоит учитывать, что этот металл предназначен для производства клапанов двигателей внутреннего сгорания транспортных средств.
  4. 1Х8ВФп представляет собой также жаропрочную сталь, которая может удачно эксплуатироваться при температуре не выше 500 градусов Цельсия на протяжении десятков тысяч часов. Подходит этот спав для производстве элементов, используемых при изготовлении паровой турбины.

Очень часто в состав добавляется хром, за счет чего получается мартенситный сплав. Наиболее распространенными вариантами подобных металлов можно назвать Х6С и Х9С2, Х7СМ и Х10С2М. Среди особенностей их производства можно отметить нижеприведенные моменты:

  1. После процесса легирования проводится закалка при температуре около 1000 градусов Цельсия.
  2. Придать жаропрочность можно путем последующего отпуска металла при температуре 8100 градусов Цельсия. за счет этого создается твердая структура сорбита, которая может выдерживать длительный нагрев.

Для получения подобных составов требуется специальное оборудование, при помощи которого и проводится отпуск при сильном нагреве структуры.

Особенностями ферритных сплавов можно назвать нижеприведенные моменты:

  1. Прочность и жаропрочность достигаются за счет создания мелкозернистой структуры. Получается она после закалки, обжига и отпуска при определенных режимах.
  2. Как правило, в рассматриваемом составе есть от 20-30 процентов хрома. Основные эксплуатационные качества позволяют использовать металл при изготовлении теплообменников.

Примерами ферритных сплавов можно назвать марки Х28 и Х17, Х18СЮ и другие. Нагрев проводится до температуры 180 градусов Цельсия, при более высоких показателях поверхность станет более хрупкой по причине мелкозернистой структуры.

Мартенситно-ферритный состав применяется при производстве машиностроительных деталей. Особенности структуры позволяют проводить ее нагрев до температуры 600 градусов Цельсия без изменения основных эксплуатационных качеств.

Наибольшей востребованностью пользуются жаростойкие сплавы двух основных групп:

  1. Дисперсионно-твердеющие. Подобные составы больше всего подходят для изготовления деталей турбин или клапанов двигателя. Они подвержены длительному нагреву и частому охлаждению. Стоит учитывать, что падение и повышение температуры в большинстве случаев становится причиной перестроения структуры сплава, но дисперсионно-твердеющие могут выдерживать подобное воздействие на протяжении всего срока эксплуатации.
  2. Гомогенные. Применяются они для производства труб или арматуры, которые будут подвергаться большой нагрузке. Стоит учитывать, что трубы во время эксплуатации подвергаются не только воздействию со стороны рабочей среды, но и давлению, а также ударной нагрузке.

Есть жаропрочные стали, которые могут выдерживать воздействие огромных температур. Примером назовем следующие сплавы:

  1. Тантал является одним из самых жаропрочных сплавов, так как может выдерживать воздействие температуры 3000°С.
  2. Вольфрам не реагирует на воздействие окружающей температуры 3410°С.
  3. Ванадий применяется при воздействии окружающей среды 1900°С.
  4. Ниобий не реагирует на воздействие температуры 2415°С.
  5. Рений самый жаропрочный сплав, который не реагирует на воздействие среды 3180°С.
  6. Цирконий можно эксплуатировать при 1855°С.
  7. Гафний применяется в том случае, если на деталь будет оказываться воздействием температуры 2000°С.
  8. Молибден может эксплуатироваться при 2600°С.

Столь высокая жаропрочность достигается путем добавления различных легирующих элементов. Окисление легирующих элементов приводит к защите структуры от воздействия окружающей среды.

Жаропрочные сплавы также классифицируются следующим образом:

  1. 30% рения с добавкой небольшого количества вольфрама.
  2. 10% вольфрама с добавлением незначительного количества тантала.
  3. 10% ниобия и 60% ванадия.
  4. 48% железа и 1% циркония, а также 5% молибдена и 15% ниобия.

Вышеприведенная информация определяет то, что высоко жаропрочная сталь может классифицироваться по следующим показателям:

  1. Температура окружающей среды, при которой сплав не изменяет свои эксплуатационные качества.
  2. Длительность нагрева.
  3. Устойчивость к воздействию химической среды или повышенной влажности.

Сегодня из жаропрочной нержавеющей стали изготавливаются самые различные детали, которые могут эксплуатироваться в опасной среде. Подобная жаропрочная сталь может выдерживать не только длительный нагрев, но и не реагирует на воздействие окружающей среды.

Применение жаропрочных сталей

Область применения рассматриваемого типа сплавов весьма большая. Жаропрочные стали и сплавы предназначены для применения при условии воздействия высокой температуры или агрессивной окружающей среды. Жаропрочные стали применяют для изготовления:

  1. Корпусных деталей, которые будут подвержены нагреву.
  2. Деталей конструкции двигателей внутреннего сгорания.
  3. Деталей и элементов, которые могут контактировать с различной агрессивной средой: жидкость, химикаты и так далее.

Изготовление деталей работающих при температурах более 400 градусов Цельсия не должно проводится с использованием обычного металла, так как из-за нагрева они потеряют свою прочность и жесткость.

Нагрев становится причиной изменения кристаллической решетки, за счет чего из состав выделяется углерод. Обезуглероживание становится причиной потери прочности и твердости поверхности. При изготовлении деталей паровых двигателей или современных двигателей внутреннего сгорания применение обычной стали приведет к ее расширению, за счет чего линейные размеры изменяться. Критическое изменение линейных размеров становится причиной, по которой конструкция перестает правильно работать.

Усложнение процесса производства рассматриваемого сплава становится причиной существенного повышения его стоимости. Однако в большинстве случаев снизить стоимость конструкций нельзя по причине того, что обычные стали будут быстро изнашиваться.

Деталь из жаропрочной стали

Примером применения жаропрочных сталей можно назвать нижеприведенную информацию:

  1. Турбины работают в сложных эксплуатационных условиях. Для ее изготовления часто используется легированный сплав на основе хрома ХН35ВТР. Подобный материал может выдерживать постоянную нагрузку и вибрацию, а также воздействие жара без изменения своих линейных размеров.
  2. При изготовлении газовых конструкций могут применять ХН35ВМТЮ. Сгорание газа приводит к нагреву рабочей среды до довольно высокой температуры.
  3. Компрессоры, которые работают с нагреваемой средой, имеют в качестве подвижного элемента конструкции диски и лопатки. Для повышения КПД подобной конструкции при их изготовлении используется листовой металл небольшой толщины, что существенно снижает устойчивость к воздействию рабочей среды. Именно поэтому при их изготовлении применяется легированный сплав ХН35ВТЮ.
  4. Роторы турбин также могут быть подвержены воздействию жара. При их изготовлении чаще всего применяют ХН35ВТ.
Читать еще:  Сталь полосовая общего назначения ГОСТ 103 2006

Важной особенностью рассматриваемых сплавов можно назвать сложность проведения сварочных работ. Жаропрочным сталям характерен процесс разрушения холодного шва. Для решения подобной проблемы применяется современная технология сваривания, которая имеет следующие особенности:

  1. Для устранения рассматриваемого недостатка проводится общий или локальный нагрев поверхности, что повышает ее пластичность. Данная процедура также проводится для минимизации разницы между температурой на периферии и в точке сварки, что позволяет существенно снизить показатель напряжения.
  2. После выполнения сварочных работ зачастую проводится отпуск готового изделия на протяжении нескольких часов и при температуре до 2000°С.

За счет отпуска проводится удаление основной части растворенного в структуре водорода, а остаточный аустенит преобразуется в мартенсит.

Сегодня насчитывается несколько десятков разновидностей жаропрочных сталей, все они обладают своими определенными особенностями. Кроме этого отметим, что довольно часто они обладают также коррозионной стойкостью, так как в состав добавляется большое количество хрома. Коррозионная стойкость ко всему прочему существенно повышает срок эксплуатации изделия. Однако сложности, возникающие при легировании и последующем термической обработке существенно повышают стоимость изделий. Кроме этого, жаропрочные сплавы могут иметь самое различное количество легирующих элементов, которые могут придавать материалу и другие особые эксплуатационные качества, к примеру, повышение электропроводности.

Жаропрочная нержавеющая сталь

Компания «МПСтар» реализует жаропрочные листы, трубы, прутки и другой металлопрокат из нержавеющей стали по минимальным ценам в ассортименте. При необходимости осуществляем продажу кусками/заготовками. Также мы оказываем сопутствующие услуги по металлообработке, упаковке, хранению и доставке товара в различные регионы России.

Обеспечим Вам комфортный сервис полного цикла. Гибкая система скидок. Свой автопарк — бесплатная доставка по Москве в течение 1 дня. Доставка в регионы за 2-3 суток (бесплатная доставка до терминала транспортной компании).

Характеристики и химический состав

Жаропрочная сталь не боится воздействия различных химических веществ и не изнашивается в условиях постоянной эксплуатации при повышенных температурах. Этого удается достичь за счёт большой доли легирующих компонентов, упрочняющих решетку материала и не позволяющие быстро распространяться окислительным процессам. При этом сталь не будет менять форму при воздействии больших температур, а также не станет покрываться ржавчиной.

Жаропрочную нержавейку условно делят на 4 категории:

  • мартенситные стали с малым содержанием хрома (до 13%) и углерода (до 1%);
  • аустенитные стали с большой долей хрома и никеля (до 25%) и молибдена (до 6%);
  • ферритные стали, в которых практически отсутствует карбон (до 0,2%), но содержится до 27% хрома;
  • сорта с ферритными и аустенитными свойствами, в которых содержится до 28% соединений хрома и до 8% никеля.

В нашем ассортименте представлены различные марки жаропрочных нержавеющих сталей:

  • AISI 309 (20Х20Н14С2) – сплав с большим содержанием никеля и хрома;
  • AISI 310 (20Х23Н18) – тугоплавкий материал, который может работать в условиях восстанавливающей или окисляющей среды при температурах около 1000 градусов;
  • 10Х23Н18 – аналог вышеназванной стали с меньшей долей хрома;
  • AISI 314 (20Х25Н20С2) – аустенитный сплав для использования при максимально жарких условиях.

Цена проката нержавеющей жаропрочной стали

Лист нержавеющий жаропрочныйНаличие, размеры и цены уточняйте в каталоге.
Труба нержавеющая жаропрочнаяНаличие, размеры и цены уточняйте в каталоге.

Уточнить информацию по актуальному ассортименту предлагаемых нами изделий из нержавейки, Вы можете у наших менеджеров.

Сферы применения

Эксплуатируются различные жаростойкие марки стали по разному, во многом их предназначение определяют легирующие компоненты:

  • AISI 309 подходит для производства фрагментов печного и конвейерного оборудования;
  • AISI 310 применяется для производства транспортеров печей, ДВС и других камер сжигания, турбин, дверей и моторов;
  • AISI 310S подходит для изготовления оборудования, используемого для транспортировки газов при высокой температуре – это могут быть системы отвода выхлопных газов, газопроводы или турбины;
  • AISI 314 используется при производстве печей за счёт максимальных тугоплавких свойств.

Купите жаропрочную нержавейку выгодно.

Предлагаем купить прокат нержавеющей жаропрочной стали на выгодных условиях:

  • Большой выбор сортамента и типоразмерного ряда.
  • Возможность дополнительной обработки металла — резка, гибка, цинкование, перфорация
  • Продажа кусками и заготовками
  • Реализация изделия, как оптом, так и в розницу.
  • Цены без комиссий посредников.
  • Различные способы и условия оплаты.
  • Гибкая система скидок для оптовых и постоянных партнеров.
  • Бесплатные профессиональные консультации.
  • Возможность предварительной комплектации заказа на складе.
  • Быстрые сроки доставки. Отгрузка оплаченного товара в течение суток по Москве.
  • Доставка в регионы России за 2-3 дня. При необходимости мы самостоятельно просчитаем и закажем услуги транспортной компании. Доставка до терминала транспортной компании бесплатная.
  • Упаковка товара в соответствии с требованиями заказчика. Есть возможность использования нескольких типов упаковки: полиэстеровой ленты ПЭТ и полиэтиленовой пленки ПВХ.
  • Возможность хранения товара на нашем складе до отгрузки.
  • Возврат товара в соответствии с законодательством РФ.

Продажа жаропрочной нержавеющей стали со склада в Москве.

Продажа жаропрочной нержавейки, осуществляется со склада в Москве, расположенного по адресу: 111123, г. Москва, ш. Энтузиастов, д. 56, стр. 44

Получить оплаченный товар можно путем самовывоза или с помощью доставки, которую осуществит наша компания. Собственный автопарк, состоящий из автомобилей различной тоннажности, позволит нам недорого и оперативно доставить заказ до Вашего объекта.

При заказе продукции от 100 кг. доставка будет для Вас бесплатной.

Отгрузка и доставка оплаченного товара производится в течение одних суток.

Телефон отдела продаж в Москве: +7 (495) 662-73-93

Телефон отдела продаж в регионах: 8-800-200-73-93

Марки сталей, которые являются жаропрочными

Для работы в особых условиях, которые могут быть обусловлены высокой температурой или электрическим напряжением, необходим материал, который способен противостоять негативным воздействиям окружающей среды. Именно для таких целей и были произведены марки сталей, которые являются жаропрочными.

Изготавливается этот материал специальным способом, который позволяет выдерживать и не деформироваться при долговременном негативном внешнем воздействии долгий временной промежуток. Характеризуется эта разновидность стали ползучестью и прочностью, которые являются основными показателями этого продукта промышленности.

Ползучесть отвечает за действие непрерывной деформации материала при нахождении стали в неблагоприятных условиях. Прочность отвечает за период, который может жаропрочная сталь противостоять внешним воздействиям.

Жаростойкая марка сплавов – что это?

Жаропрочность, которая ещё называется окалиностойкостью, показывает с какой прочностью тот или иной материал при высокой температуре на протяжении длительного времени может противостоять газовой коррозии. Способность стали не поддаваться пластической деформации и разрушению свидетельствует о том, что этот материал является жаростойким.

Такие жаростойкие сплавы применяются во многих отраслях промышленности. Например, нагревательный элемент печей, который работает при +550°С не может быть изготовлен из обычной, не жаропрочной стали, она просто не сможет выдержать такой нагрузки.

При температурах свыше пятисот пятидесяти градусов сплавы на основе железа способны к окислению, что вызывает формирование на их поверхности оксида феррума. Характеризуется это соединение кристаллической решёткой, в которой недостаёт атомов кислорода, что вызывает появление окалины хрупкого типа.

Чтобы произвести сталь жаропрочной марки нужно в сплав добавить такие элементы, как алюминий, хром, кремний. Именно такие соединения позволяют воспроизводить с кислородом другие решётки, которые отличаются надёжным и плотным строением. Количество и состав добавок формируется в зависимости от окружающей среды, в какой будет впоследствии работать эта жаростойкая марка стали.

Максимальная жаростойкость сплавов обнаруживают те материалы, которые были произведены базе никеля. Маркировка, которая относится к таким сплавам:

  • 15Х25Т;
  • 36Х18Н25С2;
  • 15Х6СЮ;
  • 08Х17Т.

Добавление хрома также способствует увеличению жаропрочности стальных композиций, которые могут, не теряя своих основных качеств работать даже при — 1150 °С.

Читать еще:  Сталь 45л ГОСТ 977 88

Жаропрочная марка сплава – что она собой представляет

Марка такой стали подходит для изготовления изделий, которые будут функционировать в условиях повышенной температуры и будет присутствовать эффект ползучести. Ползучесть или склонность сплава к медленной деформации происходит под воздействием постоянной нагрузки и неизменной температуре.

Ползучесть металла бывает двух видов:

  • Длительной;
  • Кратковременной.

Так как жаропрочность сплава и её марка зависит от вида ползучести, то её устанавливают во время растяжения изделий и проведении анализов на основе итогов поведения сплава. Проводят такие процедуры в нагревательной печи при заданных температурах. Так определяется предел ползучести и разрушение материала при воздействии температуры и временного промежутка.

Марки жаростойких сталей, их классификация и описание

Структуры таких жаростойких сталей подразделяются на:

  • перлитные;
  • мартенситно-ферритные;
  • мартенситные;
  • аустенитные.

Существует и подразделение жаропрочных сплавов на аустенитно-ферритные (мартенситные) и ферритные.

Производится такие марки мартенситных сплавов:

  • 4Х9С2 и 3Х13Н7С2 (такая марка стали используется в основном в клапанах автодвигателей, где температура поднимается до 850–950°С);
  • Х6СМ, Х5М, 1Х8ВФ, 1Х12H2ВМФ, Х5ВФ (такой сплав подойдёт для производства деталей и узлов, которые должны работать 1000–10000 часов в границах температур 500 — 600°С);
  • Х5 (такая марка используется для производства труб, которые будут работать при температуре ограниченной 650°С);
  • 1Х8ВФ (такой вид сплавов используют при изготовлении деталей паровых турбин, которые могут работать 10000 часов без потерь при температуре, которая не будет превышать 500°С).

При добавлении хрома в перлитные сплавы получаются мартенситные марки сплавов. К перлитным материалам можно отнести жаропрочные сплавы с маркировкой: Х7СМ, Х10С2М, Х9С2, Х6С. Производится их закалка при 950–1100°С, а затем при 8100°С производят отпуск стали, что позволяет создавать твёрдые конструкции со структурой сорбита.

Ферритные сплавы обладают мелкозернистой структурой, которую они получают после термообработки и обжига. В таких композициях, как правило, присутствует хром в процентном соотношении от двадцати пяти до тридцати трёх. Такие жаропрочные стали применяют производства теплообменников и пиролизного оборудования.

К ферритным сплавам относят такие маркировки материалов: 1Х12СЮ, Х28, Х17, Х18СЮ, 0Х17Т, Х25Т. Но их нельзя нагревать больше чем сто восемьдесят градусов иначе материал станет хрупким из-за своей крупнозернистой структуры.

Мартенситно-ферритные материалы отлично подходят для производства машиностроительных деталей, работа которых будет производиться при температуре в шестьсот градусов, причём длительное время.

Самые востребованные жаростойкие сплавы

Аустенитные жаростойкие сплавы стали самыми востребованными материалами в данный момент в этом сегменте сталеварения. Их структура создаётся при помощи входящего в состав никеля, а жаростойкие качества обеспечиваются наличием хрома. Такие аустенитные марки хорошо противостоят появлению окалины при температурах, не превышающих тысячи градусов.

При изготовлении этого сплава используют два вида уплотнителя: интерметаллический или карбидный. Именно эти уплотнители обеспечивают аустенитную сталь особыми свойствами, которые так востребованы в различных современных производствах.

Самые востребованные и актуальные сплавы делятся на две группы:

  • дисперсионно-твердеющие (марки Х12Н20Т3Р, 0Х14Н28В3Т3ЮР, 4Х14Н14В2М, 4Х12Н8Г8МФБ – такая сталь самый подходящий материал для изготовления деталей турбин и клапанов двигателей);
  • гомогенные (марки Х25Н20C2, 1Х14Н16Б, Х23Н18, Х25Н16Г7АР, Х18Н10T, 1Х14Н18В2Б, Х18Н12T – данные марки используются для производства труб и арматуры, которые будут работать при больших нагрузках).

Аустенитно-ферритные стали благодаря своему сплаву со стабильным строением обнаруживают довольно-таки высокую жаропрочность. Подобные марки из-за своей хрупкости нельзя использовать для производства нагруженных деталей, но эти сплавы отлично себя показывают при температурах, доходящих до 1150°С.

Тугоплавкие металлы и сплавы

Если в производстве необходимы детали предположительная среда работы, которых будет тысяча или даже две тысячи градусов, то при сплаве нужно использовать тугоплавкие металлы.

Элементы, которые используются и температура их плавления такова:

  • вольфрам (3410°С);
  • тантал (3000°С);
  • ниобий (2415°С);
  • ванадий (1900°С);
  • цирконий (1855°С);
  • рений (3180°С);
  • молибден (2600°С);
  • гафний (2000°С).

Деформируются данные металлы при нагреве, потому что высокая температура провоцирует их изменение в хрупкое состояние. Их волокнистая структура формируется при нагревании до состояния рекристаллизации тугоплавких металлов. Жаропрочность увеличивается за счёт смесей из специальных добавок. А от окисления при температуре свыше тысячи градусов эти материалы защищают добавки из титана, тантала и молибдена.

Так, путём сплавов разных элементов можно добиться нужных качеств жаропрочных материалов, которые можно использовать в самых разнообразных производствах для работы в разных температурных средах.

Жаропрочные стали в Москве

Акции

Вас могут заинтересовать

Жаропрочные стали

Жаропрочные стали представляют собой особый вид стали, способный определённое время использоваться при высоких температурах в сложнонапряжённом состоянии. В отличие от обыкновенных сталей, которые под влиянием высоких температур деформируются и сталкиваются с резким повышением пластичности, жаропрочные стали не только выдерживают высокотемпературную нагрузку, но и сохраняют все свои характеристики.

При этом, кроме устойчивости к высокотемпературной деформации, жаропрочные стали демонстрируют высокую антикоррозийную стойкость в газовых средах и способность выдерживать воздействие агрессивных внешних сред. В связи с этими особенностями производство жаропрочных сталей довольно сильно отличается от изготовления обыкновенных.

К жаропрочным сталям предъявляют повышенные технические требования, а после выплавки и очистки их подвергают дополнительным техническим испытаниям.

Классификация

Жаропрочные стали делятся на группы по:

  • Типу упрочнения;
  • Типу легирования.

По типам упрочнения жаропрочные стали делятся на:

  • Карбидные;
  • Интерметаллидные;
  • Смешанные.

По типу легирования жаропрочные стали делятся на:

  • Аустенитные;
  • Мартенситные;
  • Ферритные;
  • Смешанные (ферритно-мартенситные).

При легировании данного типа сталей используется очень большое количество разнообразных элементов, например:

  • Хром;
  • Тантал;
  • Цирконий;
  • Алюминий;
  • Молибден;
  • Кремний;
  • Ниобий.

Производство жаропрочной стали

Среди разнообразных методов производства жаропрочных сталей выделяют следующие:

  • Конвертерный. Этот метод является единым для всех типов сталей. В специальном конвертере передельный чугун, находящийся в расплавленном состоянии, проходит процесс рафинирования (то есть очистки от всевозможных вредных примесей и компонентов). Расплав продувается кислородом либо специальной смесью, для того, чтобы вывести примеси в газовое состояние либо в шлак. Для жаропрочных сталей процесс конвертирования дополняется особым испытанием. Оно заключается в размещении изготовленной стали в печи, температура внутри которой постепенно повышается. Данное испытание показывает прочностные характеристики стали и её способность сохранять свои свойства и качества под высокотемпературным воздействием за определённый отрезок времени;
  • Электротермический. В данном случае используется электропечь, которая с помощью очень высоких температур позволяет осуществлять плавку стали и быстрое выведение лишних примесей, например серы и фосфора. Электротермический метод дает возможность проведения легирования стальной поверхности с помощью таких элементов, как хром, молибден, вольфрам. Существенным недостатком электропечей является то, что они расходуют слишком большое количество электроэнергии за короткое время. В связи с этим они применяются только тогда, когда изготавливаются специальные стали с модифицированными характеристиками. К таким сталям относятся и жаропрочные, которые после окончания производственного процесса подвергаются очистке и испытанию с проверкой жаростойкости и растягивающей нагрузкой.

После изготовления жаропрочная сталь имеет следующие качества:

  • Прочность;
  • Жаростойкость;
  • Антикоррозийная стойкость и способность длительное время выдерживать агрессивное воздействие внешних сред;
  • Низкая свариваемость;
  • Невысокая прокаливаемость;
  • Твёрдость.

Применение жаропрочной стали

Жаропрочные стали применяются в следующих промышленных отраслях:

  • Изготовление печей. Из жаропрочной стали производят металлические элементы для различных типов печей, например — для банных печей и домашних каминов. Однако, гораздо более широкое применение этот материал нашёл в металлургии, где из него создают элементы для конструкций промышленных печей, предназначенных для отжига и плавления металлов;
  • Энергетическое машиностроение. Жаропрочные стали очень часто используются в производстве разнообразных турбин, роторов, компрессоров и генераторов. Это обусловлено тем, что данный материал способен относительно долго выдерживать нагрузку, связанную с воздействием электрического тока;
  • Газовая промышленность. Некоторые конструкции, предназначенные для переработки природного газа, также изготавливают из жаропрочных сталей, так как они могут выдерживать агрессивное воздействие газовой среды и высокие температуры.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector