Класс прочности болтов из нержавеющей стали
А2, А4 — Характеристика крепежных изделий из нержавеющих сталей
Нержавеющие стали А2, А4: структура, механические свойства, химический состав. Крепеж из стали А2, А4 (нержавеющие болты, винты, гайки, шайбы, шпильки и т. д. ): механические свойства, значения моментов затяжки и усилий предварительной затяжки.
Характеристики нержавеющих сталей
Аустенитные стали содержат 15-26% хрома и 5-25% никеля, которые увеличивают сопротивление коррозии и практически не магнитны.
Именно аустенитные хромникелевые стали обнаруживают особенно хорошие сочетание обрабатываемости, механических свойств и коррозионной стойкости. Эта группа сталей наиболее широко используется в промышленности и в производстве элементов крепежа: нержавеющих болтов, гаек, резьбовых шпилек, винтов, а также шайб.
Стали аустенитной группы обозначаются начальной буквой «A» с дополнительным номером, который указывает на химический состав и применяемость в пределах этой группы:
Аустенитная структура
Группа стали | Номер материала | Краткое обозначение | Номер по AISI |
---|---|---|---|
А1 | 1.4305 | X 10 CrNiS 18-9 | AISI 303 |
А2 | 1.4301 / 1.4303 | X 5 CrNi 18-10 / X 4 CrNi 18-12 | AISI 304 / AISI 305 |
А3 | 1.4541 | X 6 CrNiTi 18-10 | AISI 321 |
А4 | 1.4401 / 1.4404 | X 5 CrNiMo 18-10 / X 2 CrNiMo 18-10 | AISI 316 / AISI 316 L |
А5 | 1.4571 | X 6 CrNiMoTi 17-12-2 | AISI 316 TI |
Сталь A2 (AISI 304 = 1.4301 = 08Х18Н10) — нетоксичная, немагнитная, незакаливаемая, устойчивая к коррозии сталь. Легко поддается сварке и не становится при этом хрупкой. Может проявлять магнитные свойства в результате механической обработки (шайбы и некоторые виды шурупов). Это наиболее распространенная группа нержавеющих сталей. Ближайшие аналоги — 08Х18Н10 ГОСТ 5632, AISI 304 и AISI 304L (с пониженным содержанием углерода).
Крепеж и изделия из стали A2 подходят для использования в общестроительных работах (например, при монтаже вентилируемых фасадов, витражных конструкций из алюминия), при изготовлении ограждений, насосной техники, приборостроения из нерж. стали для нефтегазодобывающей, пищевой, химической промышленности, в судостроении. Сохраняет прочностные свойства при нагреве до 425°C, а при низких температурах до -200°C.
Сталь A4 (AISI 316 = 1.4401 = 10Х17Н13М2) — отличается от стали А2 добавлением 2-3% молибдена. Это значительно увеличивает ее способность сопротивляться коррозии и воздействию кислот. Сталь А4 имеет более высокие антимагнитные характеристики и абсолютно не магнитна. Ближайшие аналоги — 10Х17Н13М12 ГОСТ 5632, AISI 316 и AISI 316L (с низким содержанием углерода).
Крепеж и такелажные изделия из стали A4 рекомендуются для использования в судостроении. Крепеж и изделия из стали A4 подходят для использования в кислотах и средах содержащих хлор (например, в бассейнах и соленой воде). Может использоваться при температурах от -60 до 450°С.
Классы прочности
Все аустенитные стали (от «А1» до «А5») подразделяются на три класса прочности независимо от марки. Наименьшую прочность имеют стали в отожженном состоянии (класс прочности 50).
Поскольку аустенитные стали не упрочняются закалкой, наибольшую прочность они имеют в холоднодеформированном состоянии (классы прочности 70 и 80). Наиболее широко используется крепеж из сталей А2-70 и А4-80.
Классы прочности нержавеющего крепежа
Надежность резьбовых соединений зависит в первую очередь от способности сохранять свои эксплуатационные качества (расчетную нагрузку) под воздействием окружающей среды (в т. ч. в неблагоприятных условиях). Поэтому в проектах при расчетах используют такой параметр крепежа, как прочность. При этом к метизам, изготовленных из обычной и аустенитной нержавеющей стали, предъявляются свои требования: в последнем случае они регламентированы ГОСТ Р ИСО 3506-1-2009.
Структура сплава
Нержавеющий крепеж отличается чрезвычайно малым содержанием углерода – менее 0,1%. Легирующих компонентов гораздо больше. Например, количество хрома достигает 15 и более процентов. Для улучшения пластичности добавляют никель (от 8%). Также в составе есть медь, сера, фосфор, марганец, кремний. Для изготовления нержавеющего крепежа в РФ используются кислотоустойчивые сплавы 12Х18Н9Т (сталь марки А2), 10Х17Н14М2Т (А4).
Краткие характеристики материала:
- А2. Наиболее распространенный сплав: хорошо сваривается и является нетоксичным. После механической обработки может проявлять магнитные свойства. Материал не изменяет свои качества в диапазоне температур от минус 200 до плюс 425 градусов. Крепежи из этого сплава востребованы в строительстве: например, при сооружении вентилируемых фасадов, алюминиевых витражных конструкций, в приборостроительной отрасли, химической промышленности, машиностроении.
- А4. От предыдущей марки отличается наличием молибдена (до 3%), что увеличивает устойчивость к воздействию коррозии, кислот. Этот вид стали совершенно немагнитен. Крепеж из А4 чаще всего применяют в судостроении. Рабочий температурный диапазон: от -60 до +450 градусов.
Классы прочности
Классов прочности всего три, и они обозначаются, согласно ГОСТ Р ИСО3506-1-2009, цифрами 50, 70, 80. Ниже – предел прочности на разрыв (в скобках – максимальная способность к текучести) по классам прочности нержавеющего крепежа:
- 50: 500 Н/кв. мм (210 Н/кв. мм);
- 70: 700 Н/кв. мм (450 Н/кв. мм);
- 80: 800 Н/кв. мм (600 Н/кв. мм).
Наименее надежной считается сталь первого типа, отожженная. Нержавейка не закаливается, наибольшая прочность достигается в холоднодеформированном состоянии. Это классы 70 и 80.
Примеры маркировки
Если это болт, то маркировка наносится на его головку около клейма компании-изготовителя. Шпильки обозначаются на торце (полнорезьбовой вариант) или гладкой части. В некоторых случаях, например, когда метиз имеет слишком малые габариты, используется цветная маркировка. А2 присвоен зеленый, А4 красный оттенок. Если цвет отсутствует, считается, что метиз имеет средний класс прочности – 70. В обозначениях на первом месте стоит марка стали, далее указывается классификационная группа:
- А2-50: класс мягкой нержавеющей стали с прочностью на разрыв до 500 Н/кв. мм или 500 Мпа;
- А2-70: холоднодеформированная нержавейка с характеристикой надежности 700 Мпа;
- А4-80: специальный сплав повышенной прочности, предел которой составляет 800 Мпа.
Как рассчитать нагрузку
Знание класса прочности помогает выбрать метиз с оптимальными характеристиками. Для этого используют формулу (на примере болта М12, изготовленного из стали марки А2-70): Np0,2=AsxRp0,2=84,3х450=37935Н. Здесь:
- As – площадь сечения болта 84,3 кв. мм (можно найти в ГОСТ Р ИСО3506 в таблице А1);
- Rp: предел текучести стали.
Чтобы вычислить максимальную нагрузку, допустимую для данного метиза, полученное значение разделите на 20. Результат – 1896 кг. Это и есть максимально допустимая нагрузка на болт. Если хотите перестраховаться, быть уверенным в большей безопасности, делите на 30.
Классы прочности нержавеющего крепежа
Механические характеристики болтов, винтов, шпилек из нержавеющих сталей регламентируются ГОСТ Р ИСО 3506-1-2009. Настоящий стандарт классифицирует нержавеющие крепежные изделия по классам прочности, которые принято обозначать двумя цифрами: 50, 70, 80 и писать через дефис с маркой стали: А1-50, А2-70, А4-80. Что означают эти цифры? – это 1/10 часть от минимального предела прочности на растяжение.
Для производства нержавеющего крепежа чаще всего применяются марки стали А2 (пищевая) или А4 (кислотостойкая), обозначенные так в системе EN ISO, или их приближенные аналоги AISI 304 (12X18H10) и AISI 316 (03Х17Н14М2). Крепежные изделия из коррозионно-стойких сплавов аустенитной группы не упрочняются закаливанием в отличие от изделий из черных металлов. Их главным легирующим компонентом являются хром и никель, а также молибден (для марки А4). Процентное содержание этих и других добавок определяет степень коррозионной стойкости крепежа, максимальные рабочие нагрузки и другие свойства.
Примеры обозначения прочности крепежа из нержавейки:
А2-50 – мягкая сталь с пределом прочности на разрыв минимум 500 Н/мм² (500МПа).
А2-70 – холоднодеформированная сталь с пределом прочности на разрыв минимум 700 Н/мм² (700МПа).
А4-80 – высокопрочный сплав с пределом прочности на разрыв минимум 800 Н/мм² (800МПа).
Маркировка наносится на головку болтов (винтов) рядом с клеймом изготовителя, а шпильки маркируются на гладкой части или на торце, если шпилька полнорезьбовая. Иногда на торец шпильки наносится цветовая кодировка марки сплава (для А2 – зеленая, для А4 – красная). Если маркировка класса прочности отсутствует, то в расчет принимается среднее значение – 70.
Для сравнения механических свойств болтов из нержавеющей и углеродистой стали обратимся к таблице:
Группа стали | Углеродистые | Аустенитные А2, А4 | |||||
Класс прочности | 5.6 | 6.8 | 8.8 | 10.9 | 50 | 70 | 80 |
Предел прочности, Н/мм² | 500 | 600 | 800 | 1040 | 500 | 700 | 800 |
Предел текучести, Н/мм² | 300 | 480 | 640 | 940 | 210 | 450 | 600 |
Из таблицы видно, что при близких значениях временного сопротивления, предел текучести у аустенитных сплавов меньше, поэтому они больше подвержены пластической деформации. Это свойство позволяет болтам или шпилькам не ломаться при превышении допустимого момента затяжки или при боковых изгибающих нагрузках. В худшем случае превышение усилия может привести к срыву резьбы. В то время как углеродистые стали более хрупкие и запредельные нагрузки могут привести к излому резьбового крепежа.
Расчет нагрузок для нержавеющих болтов
Зная прочностные характеристики аустенитных сплавов, не трудно рассчитать максимальную нагрузку на болты по формуле. Для примера взят болт М12, А2-70.
Np0.2 = As х Rp0.2 = 84.3 х 450 = 37935 Н, где:
As – расчетная площадь сечения М12 (см. ГОСТ Р ИСО 3506 табл. А.1.)
Rp0.2 – предел текучести
Для определения расчетной рабочей нагрузки полученное значение необходимо разделить как минимум на 20: 37935 / 20 = 1896 кг, а для большей уверенности в безопасности болтокомплекта лучше разделить на 30.
Класс прочности – важнейшая характеристика нержавеющей стали, прописанная в национальном стандарте ГОСТ Р ИСО 3506-1-2009, которую следует учитывать при расчете нагрузки на болтовое или шпилечное соединение.
Евгений Гурьевич
НЕРЖавеющие свойства стали проявляются ИСКЛЮЧИТЕЛЬНО наличием ХРОМа в количестве более 12,6%, а *никель от 8%* повышает её пластичность и свариваемость, а *молибден* — ЖАРОпрочность: 03Х17Н14М2 предназначена для изготовления ВП метизов точением и ГОРЯЧЕЙ формовкой с накаткой.
Дамы и господа! Спасибо вам большое за такую полезную информацию, да ещё и грамотно поданную !
Все о прочности болтов
- Основные классы
- Основные виды болтов
- Маркировка
- Как узнать?
Большой ассортимент на рынке представляют крепежные составляющие. Они могут применяться как для обычного соединения различных частей конструкций, так и для того, чтобы система выдерживала увеличенные нагрузки, была более надежна.
Выбор категории прочности болтов напрямую зависит от того, с какими целями будет использована конструкция.
Основные классы
Болт представляет собой крепежный элемент цилиндрической формы с резьбой снаружи. Обычно имеет шестигранную головку, сделанную под гаечный ключ. Соединение происходит при помощи гайки либо другого отверстия с резьбой. До создания винтовых крепежей болтами называли любые изделия в форме стержня.
Конструктивное устройство болта выглядит следующим образом.
Головка
С ее помощью остальной части крепежа передается крутящий момент. Она может иметь шестигранную, полукруглую, полукруглую с винтом, цилиндрическую, цилиндрическую с шестигранным углублением, потайную и потайную с винтом формы.
Стержень цилиндрической формы
Делится на несколько видов:
- стандартный;
- для установки в отверстие, имеющее зазор;
- для монтажа в отверстие, обработанное разверткой;
- со стержнем уменьшенного диаметра без резьбы.
Гайка
Может быть следующих форм:
- круглая;
- гайка-барашек;
- шестигранная (с фасками низкими/высокими/нормальными, корончатая и прорезная).
Существует множество типов болтов, все зависит от того, какими качествами при эксплуатации должна обладать изготавливаемая конструкция. Класс прочности болтов описывает их механические свойства.
Опираясь на самые популярные таблицы, можно понять, что данный класс является основным.
Прочность — это свойство изделия, характеризующееся сопротивлением к разрушению со стороны внешних факторов. Любой производитель обязательно указывает прочность изделия для того, чтобы при монтаже или сборке было понятно, подходят ли крепежи для тех или иных случаев. Измеряется прочность двумя цифрами, разделенными точкой, либо двузначным и однозначным числом, также разделенными точкой:
- 3.6 — соединительные элементы, изготовленные из нелегированной стали, дополнительная закалка не применяется;
- 4.6 — для производства использована углеродистая сталь;
- 5.6 — изготавливаются из стали без заключительного отпуска;
- 6.6, 6.8 — метизы из углеродистой стали, без примесей;
- 8.8 — в сталь добавляются такие компоненты, как хром, марганец или бор, дополнительно происходит отпуск готового металла при температуре выше 400°С;
- 9.8 — имеет минимум отличий от предыдущего класса и более высокую прочность;
- 10.9 — для производства таких болтов берется сталь с дополнительными добавками и отпуском 340-425°С;
- 12.9 — применяется нержавеющая или легированная сталь.
Первое число означает предел прочности (1/100 Н/мм2 или 1/10 кг/мм2), то есть 1 миллиметр квадратный болта 3.6 выдержит на разрыв 30 килограмм. Второе число — это соотношение предела текучести к пределу прочности в процентах. То есть болт 3.6 не будет деформироваться до усилия 180 Н/мм2 или 18 кг/мм2 (60% от предела прочности).
Исходя из значений прочности, соединяющие болты делятся на следующие варианты.
- Функционирующие на растяжение-разрыв по внутреннему диаметру болта. Чем выше прочность крепежа, тем больше вероятность, что болт деформируется при нагрузке, то есть растянется.
- Функционирующие на срез болта по двум плоскостям. Чем меньше прочность, тем выше вероятность, что крепление разрушится.
- Функционирующие на растяжение и срез — происходит срез головки болта.
- Фрикционные — тут происходит смятие материала под крепежом, то есть функционирующие на срез, но с большим натяжением крепежей.
Предел текучести — это наибольшая нагрузка, при увеличении которой происходит деформация, в дальнейшем не подлежащая восстановлению, то есть винтовое соединение увеличится в длину после определенных действий. Чем большую тяжесть выдерживает конструкция, тем выше показатель текучести. Рассчитывая нагрузку, обычно берут 1/2 или 1/3 от предела текучести. В качестве примера можно рассмотреть кухонную ложку — если согнуть ее в одну сторону, получится другой предмет. Текучесть нарушилась — это привело к деформации, но сам материал не сломался. Можно сделать вывод, что упругость стали выше ее текучести.
Другой предмет — нож, при сгибании сломается. Следовательно, сила прочности и текучести одинакова. Изделия с такими характеристиками еще называют хрупкими. Предел на растяжение — изменение размера и формы материала под действием внешних факторов, изделие при этом не разрушается. Иными словами, это процент удлинения материала по сравнению с изначальным образцом. Данная характеристика показывает длину болта до поломки. Классификация по размерам – чем больше площадь, тем больше сопротивление скручиванию.
Длина болта выбирается в соответствии с толщиной соединяемых частей.
Крепежи делятся и по такому показателю, как точность. В производстве используются разные способы нарезки резьбы и обрабатывания поверхности. Она может быть повышенной, нормальной и грубой.
- С – грубая точность. Данные крепежи подходят для отверстий на 2-3 миллиметра больше самого стержня. При такой разности диаметров соединения могут сдвигаться.
- В – нормальная точность. Соединительные элементы устанавливаются в отверстия на 1-1.5 миллиметра шире стержня. Поддаются меньшей деформации по сравнению с предыдущим классом.
- А – высокая точность. Отверстия для данной группы болтов могут быть шире на 0.25-0.3 миллиметра. Крепежи имеют достаточно высокую стоимость, так как производят их методом точения.
Для крепежей, изготовленных из нержавеющей стали, указывают не класс, а предел прочности на разрыв, обозначение у них другое — А2 и А4, где:
- А — это аустенитная структура стали (высокотемпературное железо с кристаллической ГКЦ-решеткой);
- числа 2 и 4 — это обозначение химического состава материала.
Нержавеющие болты имеют 3 показателя прочности — 50, 70, 80. При производстве высокопрочных болтов используют сплавы с большей твердостью и прочностью. Такие материалы стоят дороже углеродистой стали. Класс прочности варьируется – 6.6, 8.8, 9.8, 10.9, 12.9. Также для повышения показателей проводится этап термической обработки, которая изменяет химический состав и строение материала. Возможная эксплуатация в условиях температур ниже 40°С — имеет обозначение У. 40-65°С маркируется как ХЛ.
Твердость болтов — это способность материала сопротивляться проникновению в его поверхность другого тела. Характеристика твердости болтов измеряется по Бринеллю, Роквеллу и Виккерсу. Испытания твердости по Бринеллю проводятся на твердомере, индетором (вдавливаемый предмет) служит закаленный шарик, диаметр которого равен 2.5, 5 или 10 миллиметров. Размер зависит от толщины проверяемого материала. Вдавливание происходит в течение 10-30 секунд, время также зависит от испытуемого материала. Затем полученный отпечаток при помощи лупы Бринелля измеряют в двух направлениях. Соотношение приложенной нагрузки к поверхности отпечатка и есть определение твердости.
Метод Роквелла также основан на вдавливании. В качестве индетора для твердых сплавов выступает алмазный конус, для более мягких — шарик из стали диаметром 1.6 миллиметров. В данном методе испытание проводится в две фазы. Сначала прикладывается предварительная нагрузка для плотного соприкосновения материала и наконечника. Затем в течение небольшого времени идет основная нагрузка. После того как рабочую нагрузку убирают, измеряется твердость. То есть расчеты будут происходить по глубине, на которой остался индетор, с приложенной предварительной нагрузкой. В данном методе выделяется 3 группы твердости:
- HRA — для особо твердых металлов;
- HRB — для относительно мягких металлов;
- HRC — для относительно твердых металлов.
Твердость Виккерса определяется по ширине отпечатка. Вдавливаемым наконечником служит алмазная пирамида с четырьмя гранями. Измеряется расчетом соотношения нагрузки к площади полученной отметки. Замеры производятся под микроскопом, установленным на оборудовании. Данный метод отличается повышенной точностью и сверхчувствительностью. Применяемые способы измерения по ГОСТ в советские времена не позволяли определять все максимально допустимые нагрузки на крепежи, поэтому изготавливаемые материалы были низкого качества.
Прочность болтов
Расчет нагрузки на болт
Маркировка головки болта обычно содержит следующие данные:
— клеймо завода изготовителя (JX, THE, L, WT, и т.п.);
— класс прочности;
— стрелка «против часовой стрелки» (если левая резьба).
Первая цифра обозначает номинальное временное сопротивление (предел прочности на разрыв): 1/100 Мпа (1/100 Н/мм 2 ;
1/10 кг/мм 2 ). Пример: (класс прочности 9.8) 9*10=900 Мпа (900 Н/мм 2 ; 91,71 кг/мм 2 ).
Вторая цифра обозначает процентное отношение предела текучести к временному сопротивлению (пределу прочности на разрыв): 1/10%. Пример: (класс прочности 9.8) 9*8=720 Мпа (720 Н/мм 2 ; 73,37 кг/мм 2 ).
Значение предела текучести — это максимально допустимая рабочая нагрузка болта, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки используют 1/2 или 1/3 от предела текучести, с двукратным или трёхкратным запасом прочности соответсвенно.
По действующей международной классификации к высокопрочным болтам относятся изделия, временное сопротивление которых больше или равно 800 Мпа (800 Н/мм 2 ; 81,52 кг/мм 2 ). Соответсвенно начиная с 8.8 для болтов и 8 для гаек.
Примеры текучести материала
Примером может послужить обычная кухонная вилка. Изогнув её в одном направлении, можно получить совершенно другой предмет, значит нарушилась ее текучесть, что привело к деформации. Материал при этом только деформировался, но не сломался, что свидетельствует о большой степени упругости стали. Вывод: максимальная прочность намного выше текучести.
Другое кухонное оборудование, например нож, сломается при попытках изменить его форму. Вывод: у ножа одинаковая сила текучести и прочности, такое изделие можно назвать хрупким, несмотря на то, что оно изготовлено из стали.
Аналогичным практическим примером может послужить вкручивание гайки: сам болт увеличивает длину только после определенного действия над ним. При неблагоприятном исходе эксперимента может состояться срыв резьбы на креплении.
Можно просмотреть тематический ролик, который покажет способ испытания болтов.
Процент удлинения — это среднестатистический показатель, который демонстрирует длину деформированной детали еще до начало поломки. Образно, можно называть такого рода болты гибкими, имея ввиду именно способность к удлинению.
Техническая терминология на этот счет довольно простая: относительное удлинение — это не что иное, как процент увеличения образца по сравнению с первоначальным размером.
Твердость материала
Твёрдость по Бринеллю – это характеристика, которая позволяет определить твёрдость материала.
Крепежи из нержавеющий стали тоже оснащены специальной маркировкой на верхушке крепления.
Вид стали А2 или А4 и предел прочности — 50, 70, 80, примеры: А2-70, А4-80. На крепления, которые имеют четко выраженную резьбу, наноситься цветная маркировка для A2 – зеленым цветом, для A4 – красным. Значение для предела текучести не указывается.
Например, значение 70 – самое стандартное и демонстрирует максимальную прочность крепежа из нержавеющей стали.
Максимальная текучесть для нержавеющих метизов, часто лишь справочное значение.
Текучесть в данном случае будет составлять 250 Н/мм2 для A2-70 и около 300 Н/мм2 для A4-80.
Приблизительное увеличение при этом будет не больше чем 40%. Иными словами, данный вид стали отменно меняет форму перед тем, как произойдёт непоправимая деформация.
Старые отечественные методы измерения по ГОСТ-у не позволяли уделить должное внимание максимально допустимым нагрузкам на болты, поэтому выпускаемые метизы были значительно ниже по качеству относительно современных.
Пример, чтобы максимально точно рассчитать нагрузку на материал, используя классификацию прочности:
Крепление М12 с прочностью 8.8 размером d2 = 10,7мм и максимально продолжительностью сечения 89,87мм2. В этом случае максимально допустимая степень нагрузки будет: (8*8*10)*89,87 ;0) = 57520 Ньютон.
Таблица нагрузок для болтов из углеродистой и из нержавеющей стали.
ST-4.6 | ST-8.8 | А2-70 | А4-80 | |||||||
РЕЗЬБА | d2, мм | Площадь по 62, тт2 | Макс. нагрузка, Ньютон | Рабочая нагрузка, кг | Макс. нагрузка, Ньютон | Рабочая нагрузка, кг | Макс. нагрузка, Ньютон | Рабочая нагрузка, кг | Макс. нагрузка, Ньютон | Рабочая нагрузка, кг |
М1 | 0,8 | 0,5 | 121 | 322 | 10 | 126 | 151 | |||
М2 | 1,7 | 2,27 | 544 | 20 | 1 452 | 70 | 567 | 20 | 681 | 30 |
М3 | 2,6 | 5,31 | 1 274 | 60 | 3 396 | 160 | 1 327 | 60 | 1 592 | 70 |
М4 | 3,5 | 9,62 | 2 308 | 110 | 6 154 | 300 | 2 404 | 120 | 2 885 | 140 |
М5 | 4,4 | 15,2 | 3 647 | 180 | 9 726 | 480 | 3 799 | 180 | 4 559 | 220 |
М6 | 5,3 | 22,05 | 5 292 | 260 | 14 112 | 700 | 5 513 | 270 | 6 615 | 330 |
М8 | 7,1 | 39,57 | 9 497 | 470 | 25 326 | 1 260 | 9 893 | 490 | 11 872 | 590 |
М10 | 8,9 | 62,18 | 14 923 | 740 | 39 795 | 1 980 | 15 545 | 770 | 18 654 | 930 |
М12 | 10,7 | 89,87 | 21 570 | 1 070 | 57 520 | 2 870 | 22 469 | 1 120 | 26 962 | 1 340 |
М14 | 12,6 | 124,63 | 29 910 | 1 490 | 79 761 | 3 980 | 31 157 | 1 550 | 37 388 | 1 860 |
М16 | 14,6 | 167,33 | 40159 | 2 000 | 107 092 | 5 350 | 41 833 | 2 090 | 50199 | 2 500 |
М20 | 18,3 | 262,89 | 63 093 | 3 150 | 168 249 | 8 410 | 65 722 | 3 280 | 78 867 | 3 940 |
М24 | 21,9 | 376,49 | 90 359 | 4 510 | 240 956 | 12 040 | 94 123 | 4 700 | 112 948 | 5 640 |
М27 | 24,9 | 486,71 | 116 810 | 5 840 | 311 493 | 15 570 | 121 677 | 6 080 | 146 012 | 7 300 |
М30 | 27,6 | 597,98 | 143 516 | 7170 | 382 708 | 19130 | 149 495 | 7 470 | 179 394 | 8 960 |
Дополненная таблица максимальных нагрузок на нержавеющие материалы и высокопрочные соединения.
Чтобы быть уверенным в безопасности нагрузки, можно без зазрения совести разделять нагрузку в Ньютонах на тридцать.