E-polirovka.ru


0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сообщение про алюминий по химии

Доклад Алюминий 9 класс сообщение

Алюминий или еще одно его менее распространённое название Глиний — это хим. элемент, в периодической табл. Менделеева находится под атомным номером 13, химический элемент 3й группы. Алюминий относится к легким металлам, его цвет серебристо-белый, также к его свойствам относятся: гранецентрированная и кристаллическая кубическая решетка, невысокая плотность, а также он начинает плавиться при 660 ˚С. Атомный вес приблизительно равен 27,04. Элемент открыл Ганс К. Эрстед.

Название элемента произошло от латинского слова alumen, оно еще за полтысячелетия до н.э. означало алюминиевые квасцы. Они применялись в качестве протравы во время окрашивания ткани, а также во время дубления кожи.

Алюминий по распространённости в природной среде занимает 3-е место, а также по распространённости среди металлов занял 1-е место. По причине своих химических свойств алюминий не встречается в чистом и свободном виде в природной среде. Зато его множество во всевозможных соединениях, а конкретно в силикатах. Огромное количество соединений с алюминием находятся в горных породах. Он встречается в таких соединениях, как слюда, глина и корунда.

В 1827 году Велер сделал открытие, он 1-й добыл алюминий в свободном состоянии, его открытие выглядело в виде порошка серого цвета. А в 1846 году Велер сделал еще одно открытие получив алюминий в виде металлических шариков блестящего цвета. Также Велером были описаны свойства алюминия. Через 8 лет Сен-Клер Девиллему удалось разработать и значительно усовершенствовать способ получения алюминия.

Теплопроводность алюминия значительно зависит от уровня его чистоты. Для алюминия с техническими характеристиками и чистотой 99,49 и 99,70%, при 200°С теплопроводность равняется 209 и 222 Вт/(м×К). Для алюминия чистота которого равняется 99,9%, и он является рафинированным электролитиески, его теплопроводность при 190°С поднимается до показателя до 343 Вт/(м×К).

По характеристикам теплопроводности алюминий занимает 4-е место. Уровень деформации, при каком режиме была выполнена термообработка, очень важен аспект наличия примесей и то что собой представляют эти добавки, все это воздействует на уровень электропроводности металла. Самыми частыми и массовыми добавками в алюминии есть железо, цинк, кремний, титан и медь.

Чем меньше в алюминии различных добавок, тем выше поднимается уровень его умения отображать от своей поверхности белый свет.

Химический элемент с легкостью может вступить в реакцию с кислородом при комнатной температуре окружающей среды. В ходе реакции на поверхности образуется оксидная пленка, при которой металлу не страшна коррозия. После того как на поверхности металла образуется пленка металл не будет взаимодействовать с водой, концентратами азотной и серной кислоты, по этим причинам тара из алюминия используется для их перевозки.

Оксидная пленка с металла с легкостью снимается при помощи солей аммония, горячей щелочи, ртутных сплавов. Когда пленка будет разрушена, элемент может вступать в химическую реакцию с некоторым рядом неметаллов и различными соединениями.

При помощи электролиза раствора глинозема в расплавленном криолите при температуре 960-970°С, добывают алюминий в максимально чистом виде.

Алюминий широко распространён в качестве конструкционного материала. Его часто используют во время производства посуды, фольги. Его нередко используют в авиастроительстве включая космическую отрасль. Чистый алюминий нельзя применять в строении, в связи с малой прочностью, прочность металла повышают за счет сплава.

Также алюминий применяется в металлургии, во время производства взрывчатых веществ. Он активно используется во время перевозок жидких газов, некоторых кислот, пищевых масел, воды, а также перекиси водорода.

Потребность в алюминии, его производство и потребление все время поднимается.

Доклад №2

Алюминий – это серебристый металл с голубовато-серым оттенком. Он отличается пластичностью, малым весом, а также отличной проводимостью тепла и электричества. Поддаётся обработке давлением и сварке. В сочетании с кислородом, образует защитную пленку, предупреждающую дальнейшее распространение коррозии. Примеси различных металлов изменяют качественную характеристику алюминия. Например, соединения алюминия с марганцем или магнием снижают его проводниковые свойства, кремневое легирование – уменьшает пластичность, сочетание с железом снижает стойкость алюминия к коррозии.

Чистый алюминий применяют в производстве полупроводниковых приборов, проводов для электрической сети, а также зеркал. Металл сложно поддается обработке из-за своей хрупкости. Поэтому, для получения готовой продукции, чаще используются его сплавы.

Прочность сплавов, полученных с помощью литья, является их отличительной особенностью, так же как и повышенная твердость. Изменение свойств алюминия позволяет проводить качественную обработку металла, а также получать заготовки различной степени сложности.

Наиболее пластичными являются алюминиевые сплавы, которые деформируются путём обработки горячим или холодным давлением. В производстве выпускаются в форме пластин, прутиков, полос, проволоки. В свою очередь, сплавы, подвергающиеся деформации, можно разделить на два вида: упрочняемые и не упрочняемые тепловой обработкой.

Не упрочняемые сплавы в своей основе имеют алюминий в совокупности с магнием или марганцем. Такие сочетания металлов, являются самыми благоприятными для изготовления пластичных и не подверженных коррозии изделий, одним, из которых является алюминиевая посуда.

Упрочнение сплавов совершается за счет закалки и последующего старения металла. Это происходит либо естественным способом, либо в результате повышения и понижения температуры. Сплав с медью – дюралюминий, является упрочняемым, он в два раза превышает исходные качества чистого алюминия, не утяжеляясь, но имеет низкую стойкость к ржавлению. Для предотвращения коррозии, изделия, изготовленные из дюралюминия, плакируют, то есть, покрывают слоем лака или чистого алюминия.

Алюминиевые сплавы имеют широкое распространение. Из них изготавливают пластины, которые впоследствии используются для изготовления консервных банок. Пищевая фольга является алюминиевой. Но самое большое применение сплавов этого металла происходит при строительстве автомобилей и самолетов.

9 класс, свойства, применение

Алюминий

Популярные темы сообщений

Дерево Бурмис является одним из необычных деревьев мира. Бурмис является гибкой сосной. Растет возле города Альберта в Канаде. Это единственное уникальное по своему роду дерево, которое относится к виду сосновых растений.

На территории нашей страны живет множество самых разных народов. Всего их насчитывается около 190. Есть народы большие, такие как русские, татары, чеченцы, а есть и совсем крошечные, которых осталось лишь считанные сотни человек.

Дисциплина и контроль – это важнейший фактор, как и для человека, так и для всего общества в целом. Вся это служит для того, чтобы человек не выбивался из намеченной калии, так как человеческий фактор присутствует всегда,

Алюминий

Кусок чистого алюминия

Алюминий — очень редкий минерал семейства меди-купалита подкласса металлов и интерметаллидов класса самородных элементов. Преимущественно в виде микроскопических выделений сплошного мелкозернистого строения. Может образовывать пластинчатые или чешуйчатые кристаллы до 1 мм., отмечены нитевидные кристаллы длиной до 0,5 мм. при толщине нитей несколько мкм. Лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке.

  1. Структура
  2. Свойства
  3. Запасы и добыча
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

Смотрите так же:

СТРУКТУРА

Кубическая гранецентрированная структура. 4 оранжевых атома

Кристаллическая решетка алюминия — гранецентрированный куб, которая устойчива при температуре от 4°К до точки плавления. В алюминии нет аллотропических превращений, т.е. его строение постоянно. Элементарная ячейка состоит из четырех атомов размером 4,049596×10 -10 м; при 25 °С атомный диаметр (кратчайшее расстояние между атомами в решетке) составляет 2,86×10 -10 м, а атомный объем 9,999×10 -6 м 3 /г-атом.
Примеси в алюминии незначительно влияют на величину параметра решетки. Алюминий обладает большой химической активностью, энергия образования его соединений с кислородом, серой и углеродом весьма велика. В ряду напряжений он находится среди наиболее электроотрицательных элементов, и его нормальный электродный потенциал равен -1,67 В. В обычных условиях, взаимодействуя с кислородом воздуха, алюминий покрыт тонкой (2-10 -5 см), но прочной пленкой оксида алюминия А123, которая защищает от дальнейшего окисления, что обусловливает его высокую коррозионную стойкость. Однако при наличии в алюминии или окружающей среде Hg, Na, Mg, Ca, Si, Си и некоторых других элементов прочность оксидной пленки и ее защитные свойства резко снижаются.

СВОЙСТВА

Самородный алюминий. Поле зрения 5 x 4 мм. Азербайджан, Гобустанский район, Каспийское море, Хере-Зиря или остров Булла

Алюминий — мягкий, легкий, серебристо-белый металл с высокой тепло- и электропроводностью, парамагнетик. Температура плавления 660°C. К достоинствам алюминия и его сплавов следует отнести его малую плотность (2,7 г/см 3 ), сравнительно высокие прочностные характеристики, хорошую тепло- и электропроводность, технологичность, высокую коррозионную стойкость. Совокупность этих свойств позволяет отнести алюминий к числу важнейших технических материалов. Он легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминий химически активен (на воздухе покрывается защитной оксидной пленкой — оксидом алюминия.) надежно предохраняет металл от дальнейшего окисления. Но если порошок алюминия или алюминиевую фольгу сильно нагреть, то металл сгорает ослепительным пламенем, превращаясь в оксид алюминия. Алюминий растворяется даже в разбавленных соляной и серной кислотах, особенно при нагревании. А вот в сильно разбавленной и концентрированной холодной азотной кислоте алюминий не растворяется. При действии на алюминий водных растворов щелочей слой оксида растворяется, причем образуются алюминаты — соли, содержащие алюминий в составе аниона.

Читать еще:  Как правильно варить аргоном алюминий?

ЗАПАСЫ И ДОБЫЧА

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре, по данным различных исследователей, оценивается от 7,45 до 8,14%.
Современный метод получения, процесс Холла—Эру был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

ПРОИСХОЖДЕНИЕ

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико. Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

ПРИМЕНЕНИЕ

Украшение из алюминия

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость. Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при напылении проводников на поверхности кристаллов микросхем.
Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Алюминий

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Читать еще:  Коэффициент расширения алюминия при нагревании

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг — это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Сообщение про алюминий по химии

Ключевые слова конспекта: алюминий, свойства алюминия, получение и применение алюминия, алюмосиликаты, глина, оксид алюминия, боксит, дюралюмин, дюраль.

Алюминий Al – элемент № 13, 3–го периода, IIIA группы, Ar (Al) = 27. Электронная конфигурация невозбуждённого атома алюминия 1s 2 2s 2 2p 6 3s 2 3p 1 :

Алюминий является р-элементом. В своих соединениях он всегда имеет степень окисления +3. Оксид и гидроксид алюминия (Al2O3 и Al(ОН)3 соответственно) амфотерны. Существует водородное соединение алюминия – гидрид алюминия AlH3 (алан) – белый порошок.

По распространённости в земной коре алюминий занимает 4-е место (после О, Si, Н). Основная масса алюминия сосредоточена в алюмосиликатах. Продуктом разрушения алюмосиликатов является глина, она состоит из каолинита – Al2O3 • 2SiO2 • 2H2O. Обычно глина содержит примесь соединений железа, придающую ей бурый цвет. Из других минералов наибольшее распространение имеет боксит – Al2O3nH2O.

АЛЮМИНИЙ – ПРОСТОЕ ВЕЩЕСТВО

Алюминий – серебристо-белый металл (на воздухе покрывается плотной тонкой плёнкой оксида), плотность 2,7 г/см 3 (лёгкий металл), легкоплавкий (t°пл. = 660 °С).

На воздухе алюминий покрывается прочной тончайшей (10 –8 м) защитной плёнкой оксида, которая препятствует проникновению кислорода к металлу и практически полностью прекращает дальнейшее окисление.

Алюминиевый порошок сгорает при нагревании в кислороде:

При окислении алюминия выделяется большое количество теплоты. Нагретый порошок алюминия при попадании в атмосферу кислорода реагирует с выделением огромного количества теплоты, достигается температура до 3000–3500 °С. Тепловой эффект реакции алюминия с кислородом чрезвычайно высок, образование этого соединения энергетически очень выгодно.

При нагревании алюминий легко реагирует с серой:

Алюминиевый порошок легко реагирует с галогенами и сгорает в атмосфере хлора. Кусочек алюминия, с которого снята оксидная плёнка, бурно реагирует с бромом. Эти реакции идут без нагревания:

Алюминиевый порошок реагирует с кристаллическим йодом, в присутствии катализатора (или при нагревании) выделяются капельки воды.

Алюминий без оксидной плёнки реагирует с азотом при сильном нагревании (800–1200 °С), образуя нитрид алюминия:

При сильном нагревании (1500–1700 °С) алюминий реагирует с углеродом (графитом) с образованием карбида алюминия:

Алюминий непосредственно не реагирует с водородом. Гидрид алюминия получают косвенным путём.

Алюминий энергично взаимодействует с водой, если механическим путём или амальгамированием снять предохраняющее действие оксидной плёнки:

Вследствие высокого теплового эффекта соединения алюминия с кислородом алюминий активно восстанавливает многие металлы из оксидов (алюмотермия):

При этом реакция обычно сопровождается выделением большого количества тепла и повышением температуры до 1200–3000 °С. Алюмотермия применяется в производстве марганца, хрома, ванадия, вольфрама, ферросплавов.

Как метод получения металлов, алюмотермия была предложена Н. Бекетовым в 1859 г. Её используют для получения многих металлов (Мп, Cr, V, W, Sr, Ва и др.).

Алюминий реагирует с галогеноводородными кислотами, разбавленной серной и азотной кислотами с образованием солей, в которых алюминий находится в катионной форме, и выделением водорода. Например:

Алюминий не реагирует с азотной и серной концентрированными кислотами в обычных условиях. На поверхности алюминия образуется защитная оксидная плёнка, алюминий пассивируется. Алюминий реагирует с разбавленной азотной кислотой (2–3 моль/л) с образованием нитрата алюминия, нитрата аммония и воды:

Алюминий активно взаимодействует с растворами щелочей. Щёлочи растворяют оксидную плёнку на поверхности алюминия. Образуются соли, в которых алюминий находится в анионной форме, и выделяется водород:

Алюминий реагирует с растворами солей, восстанавливая катионы менее активных металлов (металлов, расположенных в ряду напряжений правее алюминия):

ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ АЛЮМИНИЯ

Основным сырьём для производства алюминия служат бокситы, содержащие 32–60% глинозёма Al2O3. Алюминий получают электролизом расплава глинозёма Al2O3 в расплавленном криолите Na3AlF6. В электролизёре находится 6–8% глинозёма и 92– 94% криолита. Криолит в ходе электролиза не расходуется. Его получают искусственным путём – взаимодействием Al(ОН)3, HF и Na2CO3.

На катоде происходит восстановление алюминия: Al 3+ + 3е – → Al 0 ,

на аноде – окисление его оксида: 2Al2О3 – 12е – → 4Al 3+ + 3O2↑,

а затем вторичная реакция на аноде: С + O2 СO2 или 2С + O2 → 2СО

По широте применения сплавы алюминия занимают 2–е место после чугуна и стали. Алюминий – основа лёгких сплавов (например, дюралюмина, силумина), его применяют для производства различных ёмкостей и аппаратов, фольги и проволоки, в качестве раскислителя стали и восстановителя в алюмотермии. Высокая электропроводность и коррозионная стойкость позволяют применять aлюминий для изготовления электрических проводов, кабелей, конденсаторов. Лёгкость, коррозионная стойкость алюминия и относительная нетоксичность его соединений позволяют применять aлюминий для изготовления бытовой посуды, а алюминиевую фольгу – в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов.

Из сплавов алюминия наиболее распространены дюралюмин, сокращённо – дюраль. Большую твёрдость дюралю по сравнению с чистым алюминием придают добавки меди, марганца и т. д. Дюралюмин – основной конструкционный материал в самолётостроении. Сплавы алюминия широко используются в автомобилестроении, судостроении, авиационной технике.

Конспект урока по химии «Алюминий: характеристика и свойства». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по химии
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии

Алюминий

Алюминий является самым распространенным металлом в земной коре. Свойства алюминия позволяют активно применять в составе металлоконструкций: он легкий, мягкий, поддается штамповке, обладает высокой антикоррозийной устойчивостью.

Для алюминия характерна высокая химическая активность, отличается также высокой электро- и теплопроводностью.

Основное и возбужденное состояние

При переходе атома алюминия в возбужденное состояние 2 электрона s-подуровня распариваются, и один электрон переходит на p-подуровень.

Природные соединения

В природе алюминий встречается в виде минералов:

  • Al2O3 — корунд
  • 3BeO*Al2O3*6SiO2 — берилл (аквамарин — примесь Fe и изумруд — примесь Cr2O3)
  • Al2O3*Cr2O3 — красный рубин
  • Al2O3 с примесью Fe +2 /Fe +3 /Ti
  • Al2O3*H2O — боксит

Получение

Алюминий получают путем электролиза расплава Al2O3 в криолите (Na3[AlF6]). Галлий, индий и таллий получают схожим образом — методом электролиза их оксидов и солей.

Химические свойства
  • Реакции с неметаллами

При комнатной температуре реагирует с галогенами (кроме фтора) и кислородом, покрываясь при этом оксидной пленкой.

Al + Br2 → AlBr3 (бромид алюминия)

При нагревании алюминий вступает в реакции с фтором, серой, азотом и углеродом.

Al + F2 → (t) AlF3 (фторид алюминия)

Al + S → (t) Al2S3 (сульфид алюминия)

Al + N2 → (t) AlN (нитрид алюминия)

Al + C → (t) Al4C3 (карбид алюминия)

Алюминий проявляет амфотерные свойства (греч. ἀμφότεροι — двойственный), вступает в реакции как с кислотами, так и с основаниями.

Al + NaOH + H2O → Na[Al(OH)4] + H2↑ (тетрагидроксоалюминат натрия; поскольку алюминий дан в чистом виде — выделяется водород)

При прокаливании комплексные соли не образуются, так вода испаряется — вместо них образуются (в рамках ЕГЭ) средние соли — алюминаты (академически — сложные окиселы):

Реакция с водой

При комнатной температуре не идет из-за образования оксидной пленки — Al2O3 — на воздухе. Если разрушить оксидную пленку нагреванием раствора щелочи или амальгамированием (покрытием металла слоем ртути) — реакция идет.

Алюминотермия (лат. Aluminium + греч. therme — тепло) — способ получения металлов и неметаллов, заключающийся в восстановлении их оксидов алюминием. Температуры при этом процессе могут достигать 2400°C.

С помощью алюминотермии получают Fe, Cr, Mn, Ca, Ti, V, W.

Оксид алюминия

Оксид алюминия получают в ходе взаимодействия с кислородом — на воздухе алюминий покрывается оксидной пленкой. При нагревании гидроксид алюминия, как нерастворимое основание, легко разлагается на оксид и воду.

Читать еще:  Как запаять алюминиевый радиатор в домашних условиях?

Проявляет амфотерные свойства: реагирует и с кислотами, и с основаниями.

Al2O3 + NaOH + H2O → Na[Al(OH)4] (тетрагидроксоалюминат натрия)

Гидроксид алюминия

Гидроксид алюминия получают в ходе реакций обмена между растворимыми солями алюминия и щелочами. В результате гидролиза солей алюминия часто выпадает белый осадок — гидроксид алюминия.

Проявляет амфотерные свойства. Реагирует и с кислотами, и с основаниями. Вследствие нерастворимости гидроксид алюминия не реагирует с солями.

Al(OH)3 + LiOH → Li[Al(OH)4] (при избытке щелочи будет верным написание — Li3[Al(OH)6] — гексагидроксоалюминат лития)

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Алюминий: свойства химические и физические

Одними из самых удобных в обработке материалов являются металлы. Среди них также есть свои лидеры. Так, например, основные свойства алюминия известны людям уже давно. Они настолько подходят для применения в быту, что данный металл стал очень популярным. Каковы же свойства алюминия как простого вещества и как атома, рассмотрим в данной статье.

История открытия алюминия

Издавна человеку было известно соединение рассматриваемого металла — алюмокалиевые квасцы. Оно использовалось как средство, способное набухать и связывать между собой компоненты смеси, это было необходимо и при выделке кожаных изделий. О существовании в чистом виде оксида алюминия стало известно в XVIII веке, во второй его половине. Однако при этом чистое вещество получено не было.

Сумел же выделить металл из его хлорида впервые ученый Х. К. Эрстед. Именно он обработал амальгамой калия соль и выделил из смеси серый порошок, который и был алюминием в чистом виде.

Тогда же стало понятно, что химические свойства алюминия проявляются в его высокой активности, сильной восстановительной способности. Поэтому долгое время с ним никто больше не работал.

Однако в 1854 году француз Девиль смог получить слитки металла методом электролиза расплава. Этот способ актуален и по сей день. Особенно массовое производство ценного материала началось в XX веке, когда были решены проблемы получения большого количества электроэнергии на предприятиях.

На сегодняшний день данный металл — один из самых популярных и применяемых в строительстве и бытовой промышленности.

Общая характеристика атома алюминия

Если характеризовать рассматриваемый элемент по положению в периодической системе, то можно выделить несколько пунктов.

  1. Порядковый номер — 13.
  2. Располагается в третьем малом периоде, третьей группе, главной подгруппе.
  3. Атомная масса — 26,98.
  4. Количество валентных электронов — 3.
  5. Конфигурация внешнего слоя выражается формулой 3s 2 3p 1 .
  6. Название элемента — алюминий.
  7. Металлические свойства выражены сильно.
  8. Изотопов в природе не имеет, существует только в одном виде, с массовым числом 27.
  9. Химический символ — AL, в формулах читается как «алюминий».
  10. Степень окисления одна, равна +3.

Химические свойства алюминия полностью подтверждаются электронным строением его атома, ведь имея большой атомный радиус и малое сродство к электрону, он способен выступать в роли сильного восстановителя, как и все активные металлы.

Алюминий как простое вещество: физические свойства

Если говорить об алюминии, как о простом веществе, то он представляет собой серебристо-белый блестящий металл. На воздухе быстро окисляется и покрывается плотной оксидной пленкой. Тоже самое происходит и при действии концентрированных кислот.

Наличие подобной особенности делает изделия из этого металла устойчивыми к коррозии, что, естественно, очень удобно для людей. Поэтому и находит такое широкое применение в строительстве именно алюминий. Свойства вещества также еще интересны тем, что данный металл очень легкий, при этом прочный и мягкий. Сочетание таких характеристик доступно далеко не каждому веществу.

Можно выделить несколько основных физических свойств, которые характерны для алюминия.

  1. Высокая степень ковкости и пластичности. Из данного металла изготовляют легкую, прочную и очень тонкую фольгу, его же прокатывают в проволоку.
  2. Температура плавления — 660 0 С.
  3. Температура кипения — 2450 0 С.
  4. Плотность — 2,7 г/см 3 .
  5. Кристаллическая решетка объемная гранецентрированная, металлическая.
  6. Тип связи — металлическая.

Физические и химические свойства алюминия определяют области его применения и использования. Если говорить о бытовых сторонах, то большую роль играют именно уже рассмотренные нами выше характеристики. Как легкий, прочный и антикоррозионный металл, алюминий применяется в самолето- и кораблестроении. Поэтому эти свойства очень важно знать.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл — сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное — это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами — AL + HCL = AlCL3 + H2;
  • щелочами — 2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2;
  • галогенами — AL + Hal = ALHal3;
  • серой — 2AL + 3S = AL2S3.

В целом, самое главное свойство рассматриваемого вещества — это высокая способность к восстановлению других элементов из их соединений.

Восстановительная способность

Восстановительные свойства алюминия хорошо прослеживаются на реакциях взаимодействия с оксидами других металлов. Он легко извлекает их из состава вещества и позволяет существовать в простом виде. Например: Cr2O3 + AL = AL2O3 + Cr.

В металлургии существует целая методика получения веществ, основанная на подобных реакциях. Она получила название алюминотермии. Поэтому в химической отрасли данный элемент используется именно для получения других металлов.

Распространение в природе

По распространенности среди других элементов-металлов алюминий занимает первое место. Его в земной коре содержится 8,8 %. Если же сравнивать с неметаллами, то место его будет третьим, после кислорода и кремния.

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

Самые распространенные вещества, содержащие рассматриваемый металл:

  • полевые шпаты;
  • бокситы;
  • граниты;
  • кремнезем;
  • алюмосиликаты;
  • базальты и прочие.

В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Получение

Физические и химические свойства алюминия позволяют получать его только одним способом: электролизом расплава соответствующего оксида. Однако процесс этот технологически сложен. Температура плавления AL2O3 превышает 2000 0 С. Из-за этого подвергать электролизу непосредственно его не получается. Поэтому поступают следующим образом.

  1. Добывают бокситы.
  2. Очищают их от примесей, оставляя лишь оксид алюминия.
  3. Затем плавят криолит.
  4. Добавляют туда оксид.
  5. Данную смесь элекролизуют и получают чистый алюминий и углекислый газ.

Выход продукта составляет 99,7 %. Однако возможно получение и еще более чистого металла, который используется в технических целях.

Применение

Механические свойства алюминия не столь хороши, чтобы применять его в чистом виде. Поэтому чаще всего используются сплавы на основе данного вещества. Таких много, можно назвать самые основные.

  1. Дюралюминий.
  2. Алюминиево-марганцевые.
  3. Алюминиево-магниевые.
  4. Алюминиево-медные.
  5. Силумины.
  6. Авиаль.

Основное их отличие — это, естественно, сторонние добавки. Во всех основу составляет именно алюминий. Другие же металлы делают материал более прочным, стойким к коррозии, износоустойчивым и податливым в обработке.

Можно назвать несколько основных областей применения алюминия как в чистом виде, так и в виде его соединений (сплавов).

  1. Для изготовления проволоки и фольги, используемой в быту.
  2. Изготовление посуды.
  3. Самолетостроение.
  4. Кораблестроение.
  5. Строительство и архитектура.
  6. Космическая промышленность.
  7. Создание реакторов.

Вместе с железом и его сплавами алюминий — самый важный металл. Именно эти два представителя периодической системы нашли самое обширное промышленное применение в руках человека.

Свойства гидроксида алюминия

Гидроксид — самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, — он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия — это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или гидроксидом аммония. При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na[Al(OH)4] — тетрагидроксоалюминат натрия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector