Коэффициент расширения алюминия при нагревании
Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков
Если данный калькулятор был для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Благодарим за Ваш большой вклад в поддержку нашего проекта. Желаем Вам крепкого здоровья, счастья, успехов в профессиональной деятельности и дальнейшего процветания Вашего бизнеса. Огромное спасибо.
Больше интересного
Что же такое линолеум на сегодняшний день? Почему он до сих пор популярен и многое другое.
Что нужно знать и учитывать при кладке внутренних стен из поризованного керамического блока. Несущие конструкции и потолочные перекрытия дома закончены. После завершения возведения грубой конструкции несущих конструкций дома, мы рассмотрим, как были построены внутренние конструкции — перегородки.
Что такое теплый пол и чем он хорош, его достоинства и недостатки.
Расчет температурного линейного расширения
Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются. Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура. Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.
К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.
Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.
Как определить температурное линейное расширение
Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:
- коэффициент линейного теплового расширения;
- удлинение по осям Х, Y и Z;
- величину, на которую удлиняется материал при заданной температуре.
Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте. Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте. Система реагирует на изменения и самостоятельно выполняет подсчет.
Какие материалы чаще всего подвергаются расширению
Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:
- клинкерный и стеновой кирпич;
- дерево;
- штукатурка;
- базальт;
- стеновой кирпич.
Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали. Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления. Изменение длины трубопровода при перепадах температуры определяется по формуле
dL = a • l • (tmax – tc), мм, где:
- а – КТЛР материала, из которого изготовлена труба или другое изделие;
- tmax – наибольшая температура, которой достигает теплоноситель;
- tс — температура окружающей среды на момент установки конструкции;
- l — длина трубопровода.
Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.
Инженеру про алюминиевые сплавы
Плотность алюминия
Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см 3 , что составляет всего лишь треть от плотности сталей.
Рисунок 1 – Прочность на единицу плотности алюминия по сравнению с другими металлами и сплавами [2]
Коррозионная стойкость алюминия
Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл. Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой. Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.
Рисунок 2 – Влияние легирующих элементов на коррозионную стойкость
(и усталостную прочность) алюминиевых сплавов [2]
Температурное расширение алюминия
Линейное температурное расширение алюминия и его сплавов составляет 24·10 -6 на 1 градус Цельсия – в два раза больше чем у сталей. Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов. При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.
Модуль упругости алюминия
Модуль упругости алюминия – 70000 МПа, только треть от модуля упругости сталей. Это влечет за собой существенные последствия для геометрии конструкции, так как прогибы балок, несущая способность колонн, т.е. их боковое выпучивание или местное выпучивание прямо зависят от модуля упругости.
Рисунок 3 – Прочность и модуль Юнга некоторых металлов [2]
Рисунок 4 -Диаграммы растяжения для низкоуглеродистой конструкционной стали (St52)
и алюминиевого сплава 6082-Т6 [2]
Жесткость алюминиевых профилей
Во многих строительных конструкциях критическим параметром профилей является их жесткость. Если стальной профиль заменять на алюминиевый с сохранением его жесткости, то утолщать в три раза все стенки не совсем экономично, так как алюминий легче стали как раз в те же три раза. Однако облегчение конструкций за счет применения алюминия – это естественное стремление, как по физическим, так и по экономическим причинам.
При проектировании балок есть практичное и проверенное правило: увеличивайте все размеры кроме ширины в 1,4 раза и получите поперечное сечение с моментом инерции почти в три раза больше. Тогда для профиля с той же жесткостью (Е · I) сэкономите около 50 % веса. При этом в некоторой степени компенсируется потеря жесткости в отношении бокового выпучивания. С учетом того, что часто стандартные стальные профили являются весьма не оптимальными, можно сэкономить и больше чем 50 % веса. Это хорошо видно из рисунков 5 и 6. Если нет ограничений по высоте, и боковое выпучивание не является конструкционным параметром, то можно сэкономить до 60 % веса. Если жесткость элемента не важна, а прочность стали близка к прочности алюминиевого сплава, то экономия может быть и до 70 %, но это уже окончательный предел возможной экономии веса.
Рисунок 5
Рисунок 6 – Четыре балки, которые имеют одинаковый прогиб [2]
Это приводят ко второму важному моменту. Если момент инерции профиля увеличивается в три раза при увеличении высоты профиля только в 1,4 раза, то момент сопротивления сечения увеличится соответственно в 3:1,4=2,1 раза. Поэтому напряжения в алюминиевой балке по сравнению со стальной будут в два с лишним раза меньше. Теперь понятно, почему конструктору не надо сразу «хвататься» за высокопрочные алюминиевые сплавы, и почему менее легированные алюминиевые сплавы 6060 и 6063 (АД31) настолько популярны.
Нагрев алюминия
Как и у других металлов прочность алюминия с повышением температуры снижается. До некоторых температур это явление обратимо, то есть после охлаждения материал возвращается к тем же свойствам, что и до нагрева. До температуры около 80 °С падением прочности можно пренебречь для всех сплавов и состояний. Выше 80 °С некоторые конструкторские ситуации могут потребовать учета эффекта ползучести.
Рисунок 7 – Прочность на растяжение алюминиевого сплава 2014-Т6
при различных температурах испытания [2]
Термически упрочненные сплавы начинают терять прочность при температурах выше 110 °С, причем степень этого явления зависит от длительности нагрева.
Сплавы, не упрочняемые термической обработкой, в нагартованных состояниях начинают терять прочность при температурах выше 150 °С и также в зависимости от длительности нагрева. После нагрева термически не упрочняемых сплавов в отожженном состоянии «О» необратимой потери прочности не происходит.
Считается, что короткий нагрев термически упрочненных алюминиевых профилей до температуры 180-200 °C в течение 10-15 минут, который происходит при «оплавлении» порошковых красок, не приводит к серьезной потере прочности.
Сварка алюминиевых сплавов
Намного серьезней является потеря прочности алюминиевых сплавов при сварке. Здесь температура поднимается настолько высоко из-за локального плавления, что падение прочности вблизи сварного шва надо обязательно принимать во внимание. Термически не упрочняемые сплавы теряют всю свою прочность, полученную при нагартовке, и возвращаются к отожженному состоянию «О». Термически упрочняемые алюминиевые сплавы в состоянии Т6 теряют приблизительно 40 % их прочности (рисунок 8) за исключением сплава 7020, который теряет только 20 %. Все эти сплавы не доходят до состояния полного отжига, поскольку неизбежен определенный эффект закалки при охлаждении шва. Требования к прочностным характеристикам материала в зоне сварного шва устанавливают и контролируют по результатам испытаний образцов.
Рисунок 8 – Влияние нагрева при сварке на прочность
термически упрочненного алюминиевого сплава (6082-Т6) [2]
- R. Gitter Selection of structural alloys, Brussels 2008
- TALAT 2204 – Design Philosophy
ДОМОСТРОЙСантехника и строительство
- Главная
- Связаться с нами
- Четверг, 12 декабря 2019 1:08
- Автор: Sereg985
- Прокоментировать
- Рубрика: Строительство
- Ссылка на пост
- https://firmmy.ru/
α — коэффициент линейного расширения при расчетной температуре (коэффициент температурного расширения материала) .
Определение: коэффициент температурного расширения — характеризует относительную величину изменения линейных размеров тела с изменением температуры α = ΔL/LΔT.
ВАЖНО!
1 Физические характеристики материалов приняты согласно ПНАЭ Г-7-002-86. Промежуточные значения характеристик материала определяются линейной интерполяцией.
2 Справочные данные, приведенные на сайте, имеют статус «ознакомительный» и не могут заменить использование официальных источников (ПНАЭ, ГОСТы и т.п.).
В таблице представлены значения коэффициента температурного расширения металлов (коэффициент линейного расширения металлов) в зависимости от температуры.
Значения коэффициента температурного расширения металлов даны для следующих металлов: алюминий Al, бериллий Be, висмут Bi, вольфрам W, галлий Ga, железо Fe, золото Au, иридий Ir, кадмий Cd, кобальт Co, магний Mg, марганец Mn, медь Cu, молибден Mo, никель Ni, олово Sn, платина Pt, родий Rh, свинец Pb, серебро Ag, сурьма Sb, титан Ti, хром Cr, цинк Zn.
Коэффициент линейного теплового расширения металлов в таблице приведен со множителем 10 6 .
Например, значение коэффициента температурного расширения металлов в таблице для алюминия при 0°С указано 22,8, а с учетом множителя 10 6 , это значение составляет 22,8·10 -6 1/град.
Следует отметить, что к металлам с низким коэффициентом расширения относятся такие металлы, как вольфрам, молибден, сурьма, титан и хром. Наименьшее линейное удлинение при нагревании испытывает вольфрам — коэффициент линейного расширения этого металла составляет величину от 4,3·10 -6 при 0°С до 5,8·10 -6 1/град при температуре 2100°С.
Металлом, который максимально хорошо расширяется при нагреве, является цинк — его коэффициент температурного расширения имеет значение от 22·10 -6 до 34·10 -6 1/град. Также хорошо расширяются при нагревании такие металлы, как алюминий, кадмий и магний.
Примечание: температурные коэффициенты линейного расширения сталей (более 300 марок) представлены в этой статье.
Народ, что-то меня заклинило )
Есть кусок металла, толщина пусть будет 50 мм.
Поо центру есть отверстие 6 мм. Начинаю строительным феном прогревать отверстие. Вокруг отверстия металл уже горячий, по краям еще холодный. Металл расширяется.
Вопрос, как будет изменятся диаметр отверстия ?
Смотрите также
Комментарии 78
Короче, поневоле пришлось эксперимент делать. Подклинивал ГЦС в пробках. Поршень пластиковый у него.
Короче, грею феном, грею (снаружи). И поршень заклинивает. Т.е. отверстие уменьшается в диаметре ! По мере остывания ГЦС, поршень высвобождается !
Отверстие расширится. Лишний металл уйдет в деформацию шайбы «пузом».
Отверстие расширяется в том случае, если нагреть весь материал
А вы пробовали нагреть деталь размером 50 мм с одной стороны до 300 градусов чтоб другая была холодная)))))
То, что ты затеваешь, называется «прессовая посадка».При такой посадке расширение диаметра вала не учитывается, ведётся расчёт диаметра отверстия шкива: на сколько оно должно быть меньше диаметра вала, чтобы создать необходимый натяг. Ни один технолог не даст тебе правильный совет так, как для этого не хватает некоторых данных, таких как: материал шкива (сталь, чугун, алюминий и т. д.), площадь контактных поверхностей, а главное — усилие передаваемое этим прессовым соединением. Набери в поисковике «прессовые посадки» и постарайся сам разобраться — что тебе надо.
Я абсолютно ничего не затеваю. Я просто спросил что спросил: что будет с отверстием при нагреве.
Ну, из ответов выше, ты наверное уже понял, что отверстие расшириться, а то, что я написал, это ответ на вопрос Fndrei-w116, это он затевает насадить шкив на вал и задаёт вопросы.
То, что ты затеваешь, называется «прессовая посадка».При такой посадке расширение диаметра вала не учитывается, ведётся расчёт диаметра отверстия шкива: на сколько оно должно быть меньше диаметра вала, чтобы создать необходимый натяг. Ни один технолог не даст тебе правильный совет так, как для этого не хватает некоторых данных, таких как: материал шкива (сталь, чугун, алюминий и т. д.), площадь контактных поверхностей, а главное — усилие передаваемое этим прессовым соединением. Набери в поисковике «прессовые посадки» и постарайся сам разобраться — что тебе надо.
Это скорее посадка на горячую))) прессовая идёт без нагрева. Есть так же горяче- прессовая)) посадка подбирается не столько по материалу сколько по диаметру и требованиям эксплуатации данного узла. Если уж и гуглить то есть две системы посадок, система вала и система отверстия)
Строительный фен 300 градусов где то. Ну предположим наружка в 50 мм расшириться на 4-7 соток отверстие 1-ну 2-ве сотки максимум. Технологи поправьте если чё. Вроде так. Блин самому на днях это понадобиться Вал на 25 мм надо насадить шкив на 300 мм . На сколько делать натяг? Греть буду 350-400 градусов.
Занимательная физика Перельмана Вам в помощь!
itexts.net/avtor-yakov-is…erelman/read/page-12.html
Ответ на задачу 125
А где Вы видели металл, имеющий такую чёткую границу между нагретым и холодным. Одно из характерных свойств любого металла — теплопроводность.
Ну извините, что полную палитру цветов не нарисовал с полутонами. Ну ведь и ежу понятно что рисунок схематический, а не 1:1 достоверный по температурной шкале.
Ежу однозначно понятно. Непонятки не у него )))
Температурные воздействия на конструкции – Часть 2: Термомеханика
Введение
В этой части рассмотрены теоретические основы температурных воздействий на конструкции с точки зрения классической механики материалов.
В предыдущей части 1 рассмотрены особенности учета температурных воздействий при проектировании конструкций зданий по российскому своду правил СП 20.13330.2011 (СНиП 2.01.07-85).
В части 3 представлены примеры температурных воздействий на простые конструкции – балки с различными условиями закрепления.
1. Теоретические основы температурных воздействий на материалы
1.1. Температурное расширение-сокращение
Изменения температуры вызывают расширение или сокращение конструкционных материалов, в результате чего в них возникают температурные деформации и температурные напряжения. Простая иллюстрация температурного расширения показана на рисунке 2.1, где брусок материала не закреплен и поэтому имеет возможность свободно расширяться [1].
Рисунок 2.1 – Брусок материала под воздействием увеличения температуры [1]
Когда этот брусок нагревается, каждый элемент материала подвергается температурным деформациям по всем направлениям, и, соответственно, размеры бруска увеличиваются также во всех направлениях. Если взять угол А за точку отсчета и дать стороне АВ возможность сохранять свое исходное направление, то брусок примет форму, которая показана штриховыми линиями.
Для большинства конструкционных материалов температурная деформация εT является пропорциональной изменению температуры ΔT, то есть
εT = α·ΔT, (1)
где α – свойство материала, которое называется коэффициентом температурного расширения. Согласно принятому в мире «знаковому соглашению» температурное расширение считается положительным, а температурное сокращение – отрицательным [1, 2].
1.2. Коэффициент температурного расширения конструкционных материалов
Поскольку деформация является безразмерной величиной, этот коэффициент температурного расширения имеет размерность, обратную изменению температуры. В системе СИ размерность αТ может выражаться как 1/К (величина обратная единице СИ Кельвин) или 1/ºС (величина обратная градусу Цельсия). Величина αТ является одинаковой в обоих случаях, так как изменение температуры является численно одинаковым как в градусах Кельвина, так и в градусах Цельсия.
Удобно представлять величину коэффициента температурного расширения в единицах 10 -6 /ºС или мкм/м·ºС. Последний вид особенно удобен – он наглядно показывает насколько микрометров удлиняется один метр материала при увеличении температуры на один градус температуры.
Информация о коэффициентах температурного расширения некоторых конструкционных материалов представлена в таблице 1.
Таблица 2.1 — Коэффициент температурного расширения конструкционных материалов [1]
1.3. Коэффициент температурного расширения алюминиевых сплавов
Коэффициенты температурного расширения основных алюминиевых сплавов, которые применяются в строительстве, показаны в таблице 2.
Таблица 2.2 — Коэффициент температурного расширения строительных алюминиевых сплавов [3]
Из таблицы 2.2 видно, что коэффициенты температурного расширения различных алюминиевых сплавов различаются незначительно. Поэтому в своде правил СП 128.13330.2012 (СНИП 2.03.06-85) для расчетов алюминиевых конструкций в интервале температуры от минус 70 ºС до 100 ºС для всех применяемых в строительстве алюминиевых сплавов применяется коэффициент температурного расширения 0,23·10 -4 1/ºС [4]. В европейском стандарте EN 1991-1-5 величина расчетного коэффициента температурного расширения составляет 24·10 -6 1/ºС [5].
1.4. Температурные напряжения
Чтобы продемонстрировать относительную важность температурных напряжений, можно сравнить температурные напряжения с напряжениями, которые возникают при силовом нагружении [1]. Предположим, что мы имеем брус, который нагружен силами в осевом направлении с продольными деформациями, которые даются равенством
где σ – напряжение, а Е – модуль упругости. Далее предположим, что мы имеем идентичный брусок, которые подвержен изменению температуры ΔT. Это означает, что этот брусок имеет температурные деформации согласно равенства (1). Приравнивание этих двух видов деформаций дает уравнение
σ = Е·α·ΔT (3)
Вычислим осевое напряжение σ, которое дает такие же деформации, как и изменение температуры ΔT в стержнях из алюминиевого сплава и строительной (малоуглеродистой) стали при увеличении их температуры на 50 ºС.
Для алюминиевого стержня (α = 23·10 6 , Е = 70000 Н/мм 2 ):
σ = 70000·23·10 -6 ·50 = 80,5 Н/мм 2
Для стержня из малоуглеродистой стали (α = 12·10 6 , Е = 210000 Н/мм 2 ):
σ = 210000·12·10 -6 ·50 = 126 Н/мм 2
Отметим известный факт, что при одинаковом изменении температуры температурные напряжения в алюминиевом стержне составляют только 2/3 от величины температурных напряжений в стальном стержне. Так происходит потому, что величина температурных напряжений зависит от произведения модуля упругости и коэффициента температурного расширения (см. формулу (3)). Поэтому, хотя коэффициент температурного расширения алюминия в два раза больше, чем у стали, но модуль упругости алюминия в три раза меньше, чем у стали.
Как видно из приведенных выше расчетов, температурные напряжения могут достигать величин, сравнимых с напряжениями от механических нагрузок. Поэтому термические воздействия на конструкции зданий необходимо учитывать наряду с другими нагрузками, как того и требуют нормативные документы [4, 5].
1.5. Температурные перемещения
Вернемся к бруску материала, показанного на рисунке 1 [1]. Предполагаем, что материал бруска является гомогенным и изотропным, то есть механические свойства материала бруска являются одинаковыми во всем его объеме. Кроме того, предполагаем, что изменение температуры ΔT является однородным, то есть одинаковым, по всему бруску. При таких условиях мы можем вычислить увеличение любого размера бруска путем умножения первоначального размера на температурную деформацию. Например, если один из размеров бруска составляет L, то этот размер увеличиться на величину
δТ = εT· L= α·ΔT·L (4)
Уравнение (4) можно применять для вычисления изменений длин элементов конструкций после однородного нагрева, например, удлинение призматического стержня на рисунке 2.2. Поперечные размеры стержня также изменятся, но эти изменения не показаны на рисунке 2.2, так как обычно они не оказывают влияния на осевые силы, которые передаются этим стержнем.
Рисунок 2.2 – Увеличение длины призматического стрежня
в результате однородного увеличения температуры (уравнение (4)) [1]
Оценим удлинение незакрепленных алюминиевого и стального стержней длиной 3 м при увеличении их температуры на 50 ºС.
Для алюминиевого стержня:
δТ = α·ΔT·L = 23·10 -6 ·50·3000 = 3,5 мм
Для стержня из малоуглеродистой стали:
δТ = α·ΔT·L = 12·10 -6 ·50·3000 = 1,8 мм
При рассмотрении выше температурных деформаций предполагалось, что конструкция не имеет ограничений для своих перемещений, что позволяло ей расширяться или сокращаться совершенно свободно. Такие условия возникают, например, когда объект лежит на гладкой поверхности, на которой не возникает трения [1]. В таких случаях при однородном нагреве всего объекта в целом не возникает напряжений, хотя неоднородные изменения температуры могут вызывать внутренние температурные напряжения. Однако многие конструкции имеют опоры, которые препятствуют свободному расширению и сокращению их размеров. Поэтому в них развиваются температурные напряжения даже, если изменение температуры является однородным по всей конструкции.
1.6. Температурные деформации в статически определимых конструкциях
Рассмотрим ферму АВС из двух стержней, показанную на рисунке 2.3. Предположим, что температура стержня АВ изменилась на ΔТ1, а стержня ВС – на ΔТ2. Поскольку эта ферма является статически определимой, то оба стержня могут свободно удлиняться или укорачиваться, давая в результате перемещение соединения В. Однако в этом случае температурные напряжения в стержнях, а также реакции в опорах, отсутствуют.
Рисунок 2.3 – Статически определимая ферма
с однородным изменением температуры в каждом элементе
Это заключение справедливо в целом для всех статически определимых конструкций, а именно: однородное изменение температуры в элементах конструкции вызывают температурные деформации (и соответствующие изменения длин элементов) без возникновения соответствующих температурных напряжений [1, 2].
1.7. Температурные деформации в статически неопределимых конструкциях
Статически неопределимыми конструкциями называются конструкции, у которых число реакций превышает число уравнений статического равновесия. В отличие от статически определимых конструкций при расчете таких конструкций принимаются во внимание прогибы [1, 2].
В статически неопределимой конструкции температурные напряжения могут возникать или не возникать в зависимости от особенностей конструкции и особенностей температурных изменений. Чтобы проиллюстрировать некоторые из таких возможностей, рассмотрим статически неопределимую ферму, показанную на рисунке 2.4.
Рисунок 2.4 — Статически неопределимая ферма
под воздействием изменений температуры
Опоры этой конструкции позволяют узлу D двигаться горизонтально. Поэтому, когда вся ферма однородно нагревается, в ней не возникает температурных напряжений. Все элементы увеличиваются в длине пропорционально своим первоначальным длинам, а вся ферма в целом становится немного больше в размерах.
Однако, если некоторые из стержней нагреваются, а другие – нет, то возникают температурные напряжения, так как статически неопределимое расположение стержней препятствует их свободному расширению.
Заключение
1) Изменение температуры элементов конструкции вызывает в них температурные деформации. Температурные напряжения возникают только в статически неопределимых конструкциях.
2) Однородный нагрев алюминиевого стержня на 50 ºС способен при жестком закреплении концов стержня вызывать значительные температурные напряжения. При таком нагреве удлинение стержня со свободными концами составляет 3,5 мм.
Источники:
1. James M. Gere & Barry J. Goodno — Mechanics of Materials, 2009
2. Тимошенко С.П., Гере Дж. – Механика материалов, М.: Мир, 1976
3. Aluminum and Aluminum Alloys / ed. J.R. Davis, ASM International, 1993
4. СП 128.13330.2012 (СНИП 2.03.06-85) Алюминиевые конструкции
5. EN 1991-1-5 Еврокод 1: Воздействия на сооружения. Часть 1-5. Основные воздействия. Температурные воздействия
ООО «Алюком»
г. Москва, ул. Нагатинская, д. 16, стр. 9, офис 2-5
Тел.: +7 (495) 268 0444
E-mail: [email protected]
Производство и склад: Калужская обл., г. Малоярославец, ул. Калужская, 64.
Коэффициент теплового расширения
Коэффициент теплового расширения — величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении. В соответствии с этим различают:
Содержание
Коэффициент объёмного теплового расширения
и, для твёрдых тел,
Коэффициент линейного теплового расширения
Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:
— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении.
В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел и αV = 3αL;.
Например, вода, в зависимости от температуры, имеет коэффициент объёмного расширения
Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .
Для стали
Таблица коэффициента линейного расширения α,10 −6 /°C [2]
Марка стали | 20—100 °C | 20—200 °C | 20—300 °C | 20—400 °C | 20—500 °C | 20—600 °C | 20—700 °C | 20—800 °C | 20—900 °C | 20—1000 °C |
---|---|---|---|---|---|---|---|---|---|---|
08кп | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
08 | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
10кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 14,8 | 12,6 |
10 | 11,6 | 12,6 | — | 13,0 | — | 14,6 | — | — | — | — |
15кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
15 | 12,4 | 13,2 | 13,9 | 14,4 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
20кп | 12,3 | 13,1 | 13,8 | 14,3 | 14,8 | 15,1 | 15,2 | — | — | — |
20 | 11,1 | 12,1 | 12,7 | 13,4 | 13,9 | 14,5 | 14,8 | — | — | — |
25 | 12,2 | 13,0 | 13,7 | 14,4 | 14,7 | 15,0 | 15,2 | 12,7 | 12,4 | 13,4 |
30 | 12,1 | 12,9 | 13,6 | 14,2 | 14,7 | 15,0 | 15,2 | — | — | — |
35 | 11,1 | 11,9 | 13,0 | 13,4 | 14,0 | 14,4 | 15,0 | — | — | — |
40 | 12,4 | 12,6 | 14,5 | 13,3 | 13,9 | 14,6 | 15,3 | — | — | — |
45 | 11,9 | 12,7 | 13,4 | 13,7 | 14,3 | 14,9 | 15,2 | — | — | — |
50 | 11,2 | 12,0 | 12,9 | 13,3 | 13,7 | 13,9 | 14,5 | 13,4 | — | — |
55 | 11,0 | 11,8 | 12,6 | 13,4 | 14,0 | 14,5 | 14,8 | 12,5 | 13,5 | 14,4 |
60 | 11,1 | 11,9 | — | 13,5 | 14,6 | — | — | — | — | — |
15К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,0 | — | — | — | — |
20К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,2 | — | — | — | — |
22 | 12,6 | 12,9 | 13,3 | 13,9 | — | — | — | — | — | — |
А12 | 11,9 | 12,5 | — | 13,6 | 14,2 | — | — | — | — | — |
16ГС | 11,1 | 12,1 | 12,9 | 13,5 | 13,9 | 14,1 | — | — | — | — |
20Х | 11,3 | 11,6 | 12,5 | 13,2 | 13,7 | — | — | — | — | — |
30Х | 12,4 | 13,0 | 13,4 | 13,8 | 14,2 | 14,6 | 14,8 | 12,0 | 12,8 | 13,8 |
35Х | 11,3 | 12,0 | 12,9 | 13,7 | 14,2 | 14,6 | — | — | — | — |
38ХА | 11,0 | 12,0 | 12,2 | 12,9 | 13,5 | — | — | — | — | — |
40Х | 11,8 | 12,2 | 13,2 | 13,7 | 14,1 | 14,6 | 14,8 | 12,0 | — | — |
45Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
50Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
Измерения коэффициента теплового расширения
Приборы для измерения коэффициента теплового расширения жидкостей, газов и твёрдых тел называют дилатометрами.
Примечания
- ↑Температурный коэффициент линейного расширения на портале Ti-temperatures.ru
- ↑Зубченко А. С., Колосков М. М., Каширский Ю. В. и др. Марочник сталей и сплавов. — Машиностроение, 2003. — С. 585. — 784 с.
См. также
Ссылки
- Таблица-справочник для некоторых металлов (PDF)
- Коэффициент линейного расширения сталей по ПНАЭ Г-7-002-86
Wikimedia Foundation . 2010 .
- Урёв
- Передача информации
Смотреть что такое «Коэффициент теплового расширения» в других словарях:
коэффициент теплового расширения — Как физическая характеристика воды относительное изменение объема на единицу изменения температуры; объясняет изменение плотности воды. [http://www.oceanographers.ru/index.php?option=com glossary&Itemid=238] Тематики океанология EN thermal… … Справочник технического переводчика
коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis fizika atitikmenys: angl. coefficient of thermal expansion; thermal expansion coefficient vok. Wärmeausdehnungskoeffizient, m rus. коэффициент теплового расширения, m pranc. coefficient de… … Fizikos terminų žodynas
коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis Energetika apibrėžtis Nedimensinis dydis, nusakantis dujų savybę plėstis nuo šilumos ir reiškiamas dujų tūrio po išsiplėtimo ir pradinio dujų tūrio santykiu. atitikmenys: angl. coefficient of… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas
объемный коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN volumetric coefficient of thermal expansion … Справочник технического переводчика
усреднённый по активной зоне ядерного реактора коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN core average thermal expansion coefficient … Справочник технического переводчика
Коэффициент линейного расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия
Коэффициент термического расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия
коэффициент изобарического теплового расширения — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN coefficient of isobaric thermal expansion … Справочник технического переводчика
коэффициент поверхностного теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of superficial expansion … Справочник технического переводчика
Температурный коэффициент объемного расширения пластовой нефти — 22. Температурный коэффициент объемного расширения пластовой нефти Количественная характеристика теплового расширения пластовой нефти, представляющая отношение относительного изменения объема пластовой нефти при его изобарическом нагревании… … Словарь-справочник терминов нормативно-технической документации
Коэффициент теплового расширения
Коэффициент теплового расширения — величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении. В соответствии с этим различают:
Содержание
Коэффициент объёмного теплового расширения
и, для твёрдых тел,
Коэффициент линейного теплового расширения
Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:
— относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении.
В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений: αx, αy, αz. Для изотропных тел и αV = 3αL;.
Например, вода, в зависимости от температуры, имеет коэффициент объёмного расширения
Для железа коэффициент линейного расширения равен 11,3×10 −6 K −1 [1] .
Для стали
Таблица коэффициента линейного расширения α,10 −6 /°C [2]
Марка стали | 20—100 °C | 20—200 °C | 20—300 °C | 20—400 °C | 20—500 °C | 20—600 °C | 20—700 °C | 20—800 °C | 20—900 °C | 20—1000 °C |
---|---|---|---|---|---|---|---|---|---|---|
08кп | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
08 | 12,5 | 13,4 | 14,0 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 12,7 | 13,8 |
10кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,9 | 15,1 | 15,3 | 14,7 | 14,8 | 12,6 |
10 | 11,6 | 12,6 | — | 13,0 | — | 14,6 | — | — | — | — |
15кп | 12,4 | 13,2 | 13,9 | 14,5 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
15 | 12,4 | 13,2 | 13,9 | 14,4 | 14,8 | 15,1 | 15,3 | 14,1 | 13,2 | 13,3 |
20кп | 12,3 | 13,1 | 13,8 | 14,3 | 14,8 | 15,1 | 15,2 | — | — | — |
20 | 11,1 | 12,1 | 12,7 | 13,4 | 13,9 | 14,5 | 14,8 | — | — | — |
25 | 12,2 | 13,0 | 13,7 | 14,4 | 14,7 | 15,0 | 15,2 | 12,7 | 12,4 | 13,4 |
30 | 12,1 | 12,9 | 13,6 | 14,2 | 14,7 | 15,0 | 15,2 | — | — | — |
35 | 11,1 | 11,9 | 13,0 | 13,4 | 14,0 | 14,4 | 15,0 | — | — | — |
40 | 12,4 | 12,6 | 14,5 | 13,3 | 13,9 | 14,6 | 15,3 | — | — | — |
45 | 11,9 | 12,7 | 13,4 | 13,7 | 14,3 | 14,9 | 15,2 | — | — | — |
50 | 11,2 | 12,0 | 12,9 | 13,3 | 13,7 | 13,9 | 14,5 | 13,4 | — | — |
55 | 11,0 | 11,8 | 12,6 | 13,4 | 14,0 | 14,5 | 14,8 | 12,5 | 13,5 | 14,4 |
60 | 11,1 | 11,9 | — | 13,5 | 14,6 | — | — | — | — | — |
15К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,0 | — | — | — | — |
20К | — | 12,0 | 12,8 | 13,6 | 13,8 | 14,2 | — | — | — | — |
22 | 12,6 | 12,9 | 13,3 | 13,9 | — | — | — | — | — | — |
А12 | 11,9 | 12,5 | — | 13,6 | 14,2 | — | — | — | — | — |
16ГС | 11,1 | 12,1 | 12,9 | 13,5 | 13,9 | 14,1 | — | — | — | — |
20Х | 11,3 | 11,6 | 12,5 | 13,2 | 13,7 | — | — | — | — | — |
30Х | 12,4 | 13,0 | 13,4 | 13,8 | 14,2 | 14,6 | 14,8 | 12,0 | 12,8 | 13,8 |
35Х | 11,3 | 12,0 | 12,9 | 13,7 | 14,2 | 14,6 | — | — | — | — |
38ХА | 11,0 | 12,0 | 12,2 | 12,9 | 13,5 | — | — | — | — | — |
40Х | 11,8 | 12,2 | 13,2 | 13,7 | 14,1 | 14,6 | 14,8 | 12,0 | — | — |
45Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
50Х | 12,8 | 13,0 | 13,7 | — | — | — | — | — | — | — |
Измерения коэффициента теплового расширения
Приборы для измерения коэффициента теплового расширения жидкостей, газов и твёрдых тел называют дилатометрами.
Примечания
- ↑Температурный коэффициент линейного расширения на портале Ti-temperatures.ru
- ↑Зубченко А. С., Колосков М. М., Каширский Ю. В. и др. Марочник сталей и сплавов. — Машиностроение, 2003. — С. 585. — 784 с.
См. также
Ссылки
- Таблица-справочник для некоторых металлов (PDF)
- Коэффициент линейного расширения сталей по ПНАЭ Г-7-002-86
Wikimedia Foundation . 2010 .
- Урёв
- Передача информации
Смотреть что такое «Коэффициент теплового расширения» в других словарях:
коэффициент теплового расширения — Как физическая характеристика воды относительное изменение объема на единицу изменения температуры; объясняет изменение плотности воды. [http://www.oceanographers.ru/index.php?option=com glossary&Itemid=238] Тематики океанология EN thermal… … Справочник технического переводчика
коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis fizika atitikmenys: angl. coefficient of thermal expansion; thermal expansion coefficient vok. Wärmeausdehnungskoeffizient, m rus. коэффициент теплового расширения, m pranc. coefficient de… … Fizikos terminų žodynas
коэффициент теплового расширения — šiluminio plėtimosi koeficientas statusas T sritis Energetika apibrėžtis Nedimensinis dydis, nusakantis dujų savybę plėstis nuo šilumos ir reiškiamas dujų tūrio po išsiplėtimo ir pradinio dujų tūrio santykiu. atitikmenys: angl. coefficient of… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas
объемный коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN volumetric coefficient of thermal expansion … Справочник технического переводчика
усреднённый по активной зоне ядерного реактора коэффициент теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN core average thermal expansion coefficient … Справочник технического переводчика
Коэффициент линейного расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия
Коэффициент термического расширения — Коэффициент теплового расширения величина, характеризующая относительную величину изменения объёма или линейных размеров тела с увеличением температуры на 1° К, при постоянном давлении. В соответствии с этим различают: Содержание 1 Коэффициент… … Википедия
коэффициент изобарического теплового расширения — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN coefficient of isobaric thermal expansion … Справочник технического переводчика
коэффициент поверхностного теплового расширения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coefficient of superficial expansion … Справочник технического переводчика
Температурный коэффициент объемного расширения пластовой нефти — 22. Температурный коэффициент объемного расширения пластовой нефти Количественная характеристика теплового расширения пластовой нефти, представляющая отношение относительного изменения объема пластовой нефти при его изобарическом нагревании… … Словарь-справочник терминов нормативно-технической документации