С увеличением температуры электрическая проводимость алюминия
Физические свойства алюминия.
Основные свойства
Алюминий — химический элемент третей группы периодической системы Д.И. Менделеева.
Плотность , (кг/м 3 ) | 2,7 |
Температура плавления Т пл, °С | 660 |
Температура кипения Т кип, °С | 2 327 |
Скрытая теплота плавления, Дж/г | 393,6 |
Теплопроводность l , Вт/м град (при 20° С) | 228 |
Теплоемкость Ср , Дж/(г · град) (при 0–100°С) | 0,88 |
Коэффициент линейного расширения α × 10 -6 , 1/°С (пр°С) | 24,3 |
Удельное электросопротивление ρ × 10 -8 , Ом× м (при 20°С) | 2,7 |
Предел прочности σ в, МПа | 40–60 |
Относительное удлинение δ , % | 40–50 |
Твердость по Бринеллю НВ | 25 |
Модуль нормальной упругости E , ГПа | 70 |
Плотность алюминия
Плотность твердого и расплавленного алюминия снижается по мере увеличения его чистоты:
Степень чистоты, % | 99,25 | 99,40 | 99,75 | 99.97 | 99,996 | 99.9998 |
Плотность при 20°С, г/см 3 | 2,727 | 2,706 | 2,703 | 2,6996 | 2,6989 | 2,69808 |
Степень чистоты, % | 99,25 | 99.40 | 99.75 |
Плотность, г/см 3 | 2,311 | 2,291 | 2,289 |
Температура плавления и кипения.
В момент плавления алюминия возрастает объем металла: для алюминия чистотой 99,65 % — на 6,25%, для более чистого металла — на 6,60 %. По мере повышения степени чистоты алюминия температура его плавления возрастает:
Степень чистоты, % | 99,2 | 99,5 | 99,6 | 99,97 | 99,996 |
Температура плавления, °С | 657 | 658 | 659,7 | 659,8 | 660,24 |
Теплопроводность алюминия
Теплопроводность алюминия повышается с увеличением степени его чистоты. Для технического алюминия (99,49 и 99,70%) теплопроводность при 200°С равна соответственно 209 и 222 Вт/(м×К) . Для электролитически рафинированного алюминия чистотой 99,9% теплопроводность при 190°С возрастает до 343 Вт/(м×К). Примеси меди, магния и марганца в алюминии снижают его теплопроводность. Например, добавка 2 % Mn к алюминию снижает теплопроводность с 209 до 126 Вт/(м×К).
Электропроводность алюминия
Алюминий отличается высокой электропроводностью (четвертое место среди металлов — после серебра, меди и золота). Удельная электропроводность алюминия чистотой 99,99 % при 20°С равна 37,9 мкСм×м, что составляет 63,7% от электропроводности меди [59,5 мкСм×м]. Более чистый алюминий [99,999 %] обладает электропроводностью, равной 65,9% от электропроводности меди.
На электропроводность алюминия влияет ряд факторов: степень деформации, режим термической обработки и т. д., решающую же роль играет природа примесей, присутствующих в алюминии. Примеси по их отрицательному влиянию на электропроводность алюминия можно расположить в следующий ряд: Cr, V, Mn, Ti, Mg, Ag, Сu, Zn, Si, Fe Ni.
Наиболее отрицательное влияние на электросопротивление алюминия оказывают примеси Сг, V, Мп и Ti . Поэтому в алюминии для электротехнической промышленности сумма Cr+V+Mn+Ti не должна превышать 0,015% (марка А5Е) и даже 0,01 % (А7Е) при содержании кремния соответственно 0,12 и 0,16 %.
Основными примесями в алюминии являются кремний, железо, медь, цинк и титан. При малых содержаниях кремния в алюминии (0,06%) величина Fe : Si (в пределах от 0,8 до 3,8) сравнительно мало влияет на его электросопротивление. При увеличении содержания кремния до 0,15—0,16% влияние Fe : Si возрастает. Ниже приведено влияние Fe : Si на электропроводность алюминия:
Fe : Si | 1,07 | 1,44 | 2,00 | 2,68 | 3,56 |
Удельное электросопротивление алюминия, ×10 -2 мкОм·мм: | |||||
нагартованного | 2,812 | 2,816 | 2,822 | 2,829 | 2,838 |
отожженного | 2,769 | 2,771 | 2,778 | 2,783 | 2,788 |
Удельное электрическое сопротивление отожженной алюминиевой проволоки (ρ, мкОм·м) при 20°С в зависимости от содержания примесей можно приблизительно определить по следующей формуле: ρ=0,0264+0,007×(% Si)+0,0007×(% Fe) + 0,04×[% (Cr+V + Mn + Ti)].
Отражательная способность
С повышением степени чистоты алюминия возрастает его способность отражать свет от поверхности. Так, степень отражения белого света от прокатанных алюминиевых листов (фольги) в зависимости от чистоты металла, возрастает следующим образом: для Аl 99,2%—75%, Аl 99,5%—84% и для Аl 99,8%—86%. Поверхность листа, изготовленного из электролитически рафинированного алюминия чистотой 99,996%, отражает 90% падающего на него белого света.
Особенности состава, свойств и характеристик алюминия
Алюминий представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его повсеместное использование. Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с железом и свинцом), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.
Состав и структура алюминия
Для начала нашему рассмотрению подлежат структура и хим.состав алюминия. Предел прочности чистого алюминия крайне небольшой и составляет до 90 МПа. Если же к его составу добавить в небольшом соотношении марганец, медь, цинк или магний, прочность может возрасти до 700 МПа. К такому же результату приведет использование особой термической обработки.
Металл, обладающий наиболее высокой чистотой (99,99% алюминия), может применяться в специальных и лабораторных целях, в остальных же случаях используется алюминий с технической чистотой. Наиболее распространенными примесями в нем могут выступать кремний и железо, которые практически не растворяются в алюминии. В результате их добавки уменьшается пластичность и повышается прочность конечного металла.
Теперь поговорим о свойствах металла алюминия.
Данное видео расскажет о структуре алюминия:
Свойства и характеристики
Свойствами металла служат его высокие показатели тепло- и электропроводности, невосприимчивость к коррозии, высокая пластичность и устойчивость к низким температурам. При этом главное его свойство – это небольшая плотность (около 2,7 г/см 3 .).
Механические, технологические, а также физико-химические свойства этого металла имеют непосредственную зависимость от входящих в его состав примесей. К естественным его компонентам относится кремний и железо.
Давайте узнаем далее, какая температура плавления алюминия и его сплавов
Основные параметры
- Плотность алюминия составляет 2,7*10 3 кг/м 3 ;
- Удельный вес — 2,7 г/cм 3 ;
- Температура плавления алюминия 659°C;
- Температура кипения 2000°C;
- Коэффициент линейного расширения составляет — 22,9 *10 6 (1/град).
Теперь рассмотрению подлежат теплопроводность и электропроводность алюминия.
Данное видео сравнивает температуры плавления алюминия и других наиболее часто используемых металлов:
Электропроводность
Важным показателем алюминия является его электропроводность, которая уступает по величине лишь золоту, серебру и меди. Высокий коэффициент электропроводности в сочетании с небольшой плотностью обеспечивает материалу высокую конкурентоспособность в кабельно-проводниковой области.
Помимо основных примесей на этот показатель также влияет титан, марганец и хром. Если алюминий предназначен для производства проводников тока, то суммарное количество примесей не должно превышать 0,01%.
- Показатель электропроводности может варьироваться, в зависимости от состояния, в котором находится алюминий. Процесс длительного отжига увеличивает этот показатель, а нагартовка, напротив, уменьшает его.
- Удельное сопротивление при температуре 20 0 С в зависимости от марки металла находится в пределах 0,0277-0,029 мкОм*м.
Теплопроводность
Коэффициент теплопроводности металла составляет около 0,50 кал/см*с*С и увеличивается со степенью его чистоты.
Это значение меньше, чем у меди и серебра, но больше, чем у остальных металлов. Благодаря ему, алюминий активно используется в производстве теплообменников и радиаторов.
Коррозионная стойкость
Сам металл является химически активным веществом, благодаря чему его используют в алюмотермии. При контакте с воздухом на нем образуется тончайшая пленка из окиси алюминия, которая имеет химическую инертность и высокую прочность. Ее главное назначение – это защищать металл от последующего процесса окисления, а также от воздействия коррозии.
- Если алюминий обладает высокой чистотой, то эта пленка не имеет пор, полностью покрывает его поверхность и обеспечивает надежным сцеплением. В результате металл устойчив не только к воде и воздуху, но и к щелочам и неорганическим кислотам.
- В тех местах, где находятся примеси, защитный слой пленки может быть поврежденным. Такие места становятся уязвимыми для коррозии. Поэтому на поверхности может наблюдаться коррозия точечного типа. Если марка содержит 99,7% алюминия и менее 0,25% железа, скорость коррозии составляет 1.1, при содержании алюминия на 99,0% этот показатель увеличивается до 31.
- Содержащееся железо также уменьшает устойчивость металла к щелочам, но не меняет устойчивость к серной и азотной кислотам.
Взаимодействие с разными веществами
Когда алюминий обладает температурой 100 0 С, он способен взаимодействовать с хлором. Независимо от степени нагрева, алюминий растворяет водород, но при этом не ступает в реакцию с ним. Именно потому он является главным составляющим элементом газов, которые присутствуют в металле.
В целом алюминий устойчив в следующих средах:
- Пресная и морская вода;
- Соли магния, натрия и аммония;
- Серная кислота;
- Слабые растворы из хрома и фосфора;
- Раствор аммиака;
- Уксусная, яблочная и прочие кислоты.
Алюминий не устойчив:
- Раствор из серной кислоты;
- Соляная кислота;
- Едкие щелочи и их раствор;
- Щавелевая кислота.
Про токсичность и экологичность алюминия читайте ниже.
Электропроводность меди и алюминия, а также иные сравнения двух металлов представлены в таблице ниже.
Сравнение характеристик алюминия и меди
Токсичность
Хотя алюминий весьма распространен, но он не используется в метаболизме, ни у одного живого существа. Он обладает незначительным токсическим действием, но многие его неорганические соединения, которые растворяются в воде, способны длительное время пребывать в таком состоянии и негативно сказываться на живых организмах. Наиболее ядовитыми веществами выступают ацетаты, хлориды и нитраты.
Еще больше полезной информации о свойствах алюминия содержит данное видео:
Влияние температуры металла на его электропроводность
При снижении температуры утихают колебания кристаллической решётки, это облегчает прохождение электронов и электропроводность металлических проводников возрастает, а сопротивление уменьшается. Рассмотрим график типичной зависимости удельного электрического сопротивления проводника от температуры на примере меди (рисунок 2.2). В широком диапазоне температур увеличение сопротивления пропорционально увеличению температуры, на графике это выглядит как прямолинейный наклонный участок.
Рост сопротивления представляет собой повышение рассеяния электронов из-за усиления тепловых колебаний ионов и связанной с ними флуктуации электростатического поля кристаллической решётки. Относительное изменение удельного электрического сопротивления при изменении температуры на один градус Кельвина называют температурным коэффициентомудельного электрического сопротивления; обозначают какТКρ или αρ, у меди αρ = 4,33 · 10 –3 К –1 . Для большинства металлов ТКρ составляет несколько тысячных долей на кельвин; от 0,9 · 10 –3 К –1 у ртути, до 6,7 · 10 –3 К –1 у никеля.
В пределах прямолинейного участка температурной характеристики справедливо соотношение
где ρ1 и ρ2 – значения удельных электрических сопротивлений, соответству-
ющих значениям температуры Т1 и Т2;
αρ – температурный коэффициент удельного электрического
300 |
600 |
1500 |
900 |
нОм·м |
Т → |
100 |
200 |
10 |
30 |
0,1 |
ρ |
ρ т |
1083 ˚С |
17 нОм·м |
К |
Рисунок 2.2 – Зависимость удельного электрического сопротивления меди ρ от температуры |
↑ ρ |
ρ |
Плавление |
К |
В особо чистых металлах при сверхнизких температурах наблюдается криопроводимость, при этом сопротивление стремится к значению ρ, называемому остаточным сопротивлением (этот участок показан на рисунке 2.2 в увеличенном виде). Остаточное сопротивление обусловленное примесями и дефектами структуры, в тысячи раз ниже, чем сопротивление при комнатной температуре. Правило Матиссена позволяет представить удельное электрическое сопротивление проводника ρ как сумму тепловой составляющей ρт и остаточного сопротивления ρ,
где ρт – тепловая составляющая удельного электрического сопротивления;
ρ – остаточное удельное электрическое сопротивление.
Тепловая составляющая сопротивления ρт растёт пропорционально значению температуры, на рисунке 2.2 она показана прямой наклонной линией. Остаточное сопротивление практически не зависит от температуры (на рисунке ρ – горизонтальная линия). У некоторых металлов в области сверхнизких температур, ниже 10 К, возможна скачкообразная потеря сопротивления – сверхпроводимость. Металлическую медь в сверхпроводящее состояние перевести не смогли, однако оксид меди является основой купратных сверхпроводников.
В правой части графика, при температурах, близких к плавлению, также возможно нарушение линейности, особенно у ферромагнитных материалов. Это связано с перегруппировками электронов в оболочках и изменением формы кристаллов, т. е. представляет собой проявление полиморфизма.
При плавлении меди, в результате уменьшения плотности и нарушения кристаллического порядка, её удельное сопротивление возрастает в 2,4 раза. Для большинства металлов такое увеличение происходит в пределах от 1,5 до 3 раз; исключение составляют галлий и висмут, плотность которых при плавлении возрастает, а удельное электрическое сопротивление уменьшается.
Влияние примесей и других структурных дефектов на электропроводность металлов
Примеси снижают электропроводность в любом случае, даже если электропроводность металла примеси выше, чем у основного металла; это вызвано нарушением правильности структуры. Степень снижения электропроводности зависит от количества и состава примеси. Если ввести в медь серебро в количестве 0,5 %, то её электропроводность уменьшится на 1 %. Добавка в медь такого же количества кадмия снизит её электропроводность на 2 %, а цинка – на 5 %.
Примеси других элементов влияют на электропроводность меди гораздо заметнее. Для снижения электропроводности меди вдвое достаточно присутствие любой из перечисленных добавок: 1,2 % никеля; 1,1 % олова; 0,8 % алюминия; 0,4 % бериллия; 0,2 % железа или кремния; 0,1 % фосфора. Экспериментально установлено, что при малом содержании примесей удельное сопротивление металла возрастает пропорционально увеличению количества атомов каждой из примесей, таким образом, эффекты от влияния нескольких различных примесей складываются.
Собственные дефекты структуры металла – вакансии, атомы внедрения, дислокации, границы зёрен – также увеличивают его удельное электрическое сопротивление.
Для оценки химической чистоты и структурного совершенства металлов используют значение остаточного сопротивления ρ4,2, измеренное при температуре жидкого гелия (4,2 К), а также параметр β, равный отношению значений сопротивления при комнатной температуре (300 К) и при температуре жидкого гелия:
Для наиболее чистых металлов, получаемых в настоящее время (со степенью чистоты 99,99999 %), параметр β достигает порядка 10 5 .
Заметное влияние на удельное сопротивление металлов и сплавов оказывают искажения, вызываемые напряжённым состоянием материала. Например, при всестороннем сжатии у большинства металлов удельное сопротивление уменьшается. Это объясняется сближением атомов и уменьшением амплитуды тепловых колебаний решётки. При упругомрастяжении и кручении межатомные расстояния увеличиваются, что вызывает возрастание ρ.Пластическая деформация и наклепвсегда повышают удельное сопротивление металлов и сплавов, однако это повышение, даже при значительном наклепе чистых металлов, составляет единицы процентов.Термическая закалка приводит к повышению ρ, что связано с перестройкой кристаллической решётки и появлением внутренних напряжений. При рекристаллизации металлического изделия путём термической обработки (отжига) удельное электрическое сопротивление материала может быть снижено до первоначального значения за счёт снятия внутренних напряжений.
С увеличением температуры электрическая проводимость алюминия
Содержание:
Марки алюминия.
Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.
Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al , снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.
В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах
1) Металловедение алюминия и его сплавов. Под ред. И.Н.Фридляндер. М. 1971. 2) Механические и технологические свойства металлов. А.В.Бобылев. М. 1980.
Ниже в таблице приведена сокращенная информация о большей части марок алюминия. Также указано содержание его основных естественных примесей – кремния и железа.
— Фольга для обкладок конденсаторов
— Катанка для производства
— Сырье для производства алюминиевых сплавов
— Прокат (прутки, ленты, листы, проволока, трубы)
Главное практическое различие между техническим и высоокоочищенным алюминием связано с отличиями в коррозионной устойчивости к некоторым средам. Естественно, что чем выше степень очистки алюминия, тем он дороже.
В специальных целях используется алюминий высокой чистоты. Для производства алюминиевых сплавов, кабельно-проводниковой продукции и проката используется технический алюминий. Далее речь будет идти о техническом алюминии.
Электропроводность.
Важнейшее свойство алюминия – высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.
На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr + V + Ti + Mn не должна превышать всего лишь 0.01%.
Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.
Величина удельного электрического сопротивления при температуре 20 С составляет Ом*мм 2 /м или мкОм*м :
0.0277 – отожженная проволока из алюминия марки А7Е
0.0280 – отожженная проволока из алюминия марки А5Е
0.0290 – после прессования, без термообработки из алюминия марки АД0
Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.
Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.
Теплопроводность
Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.
Другие физические свойства.
Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди – 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения – у меди и железа эта величина составляет примерно 41-49 кал/г.
Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэфициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%.
Коррозионные свойства алюминия.
Сам по себе алюминий является очень химически активным металлом. С этим связано его применение в алюмотермии и в производстве ВВ. Однако на воздухе алюминий покрывается тонкой (около микрона), пленкой окиси алюминия. Обладая высокой прочностью и химической инертностью, она защищает алюминий от дальнейшего окисления и определяет его высокие антикоррозионные свойства во многих средах.
В алюминии высокой чистоты окисная пленка сплошная и беспористая, имеет очень прочное сцепление с алюминием. Поэтому алюминий высокой и особой чистоты очень стоек к действию неорганических кислот, щелочей, морской воды и воздуха. Сцепление окисной пленки с алюминием в местах нахождения примесей значительно ухудшается и эти места становятся уязвимы для коррозии. Поэтому алюминий технической чистоты имеет меньшую стойкость. Например по отношению к слабой соляной кислоте стойкость рафинированного и технического алюминия различается в 10 раз.
На алюминии (и его сплавах) обычно наблюдается точечная коррозия. Поэтому устойчивость алюминия и его сплавов во многих средах определяется не по изменению веса образцов и не по скорости проникновения коррозии, а по изменению механических свойств.
Основное влияние на коррозионные свойства технического алюминия оказывает содержание железа. Так, скорость коррозии в 5% растворе HCl для разных марок составляет (в ):
Марка | Содержание Al | Содержание Fe | Скорость коррозии |
А7 | 99.7 % | 0.16 % | 0.25 – 1.1 |
А6 | 99.6% | 1.2 – 1.6 | |
А0 | 99.0% | 27 — 31 |
Наличие железа уменьшает стойкость алюминия также к щелочам, но не сказывается на стойкости к серной и азотной кислоте. В целом коррозионная стойкость технического алюминия в зависимости от чистоты ухудшается в таком порядке: А8 и АД000, А7 и АД00, А6, А5 и АД0, АД1, А0 и АД.
При температуре свыше 100С алюминий взаимодействует с хлором. С водородом алюминий не взаимодействует, но хорошо его растворяет, поэтому он является основной составляющей газов, присутствующих в алюминии. Вредное влияние на алюминий оказывает водяной пар, диссоциирующий при 500 С, при более низких температурах действие пара незначительно.
Алюминий устойчив в следующих средах:
— естественная пресная вода до температур 180 С. Скорость коррозии возрастает при аэрации,
примесях едкого натра, соляной кислоты и соды.
— концентрированная азотная кислота
— кислые соли натрия, магния, аммония, гипосульфит.
— слабые (до 10%) растворы серной кислоты,
— 100% серная кислота
— слабые растворы фосфорной (до 1%), хромовой (до 10%)
— борная кислота в любых концентрациях
— уксусная, лимонная, винная. яблочная кислота, кислые фруктовые соки, вино
Алюминий неустойчив в таких средах:
— разбавленная азотная кислота
— разбавленная серная кислота
— плавиковая и бромистоводородная кислота
— щавелевая, муравьиная кислота
— растворы едких щелочей
— вода, содержащая соли ртути, меди, ионов хлора, разрушающих окисную пленку.
В контакте с большинством технических металлов и сплавов алюминий служит анодом и его коррозия будет увеличиваться.
Механические свойства
Модуль упругости E = 7000-7100 кгс/мм 2 для технического алюминия при 20 С. При повышении чистоты алюминия его величина уменьшается (6700 для А99).
Модуль сдвига G = 2700 кгс/мм 2 .
Основные параметры механических свойств технического алюминия приведены ниже:
Исследование влияния термической обработки на величину удельной электропроводности в металлическом композиционном материале на основе алюминия Текст научной статьи по специальности « Технологии материалов»
Аннотация научной статьи по технологиям материалов, автор научной работы — Гришина О.И., Серпова В.М., Жабин А.Н., Курбаткина Е.И.
Представлены результаты экспериментальных исследований влияния различных режимов термической обработки (отжига) на величину удельной электропроводности в металлическом композиционном материале (МКМ) на основе алюминиевого сплава, армированного дискретными волокнами углерода. Показана проблема смачивания углеродных волокон жидким алюминием в процессе пропитки и предложены пути ее решения. Для проведения исследований изготовлены образцы металлического композиционного материала на основе алюминия по жидкофазной технологии с использованием метода принудительной пропитки. Также в работе показано влияние объемной доли армирующего наполнителя на значение удельной электропроводности .
Похожие темы научных работ по технологиям материалов , автор научной работы — Гришина О.И., Серпова В.М., Жабин А.Н., Курбаткина Е.И.
The effect of heat treatment on specific electrical conductivity in aluminum composite material
The article presents the experimental results analysis of the effect of different heat treatment (annealing) on the value of the conductivity of a composite material based on aluminum alloy reinforced with discrete carbon fibers . The problem of wetting of the carbon fibers by molten aluminum during infiltration and suggested ways to improve it was shown. Samples of aluminum metal matrix composite material using liquid-phase technology, such as the method of forced infiltration were prepared. Article also shows the influence of the volume fraction of the reinforcing filler to a value of conductivity.
Текст научной работы на тему «Исследование влияния термической обработки на величину удельной электропроводности в металлическом композиционном материале на основе алюминия»
УДК 669.018.28 DOI: 10.18577/2071-9140-2014-0-s6-39-44
О.И. Гришина1, В.М. Серпова1, А.Н. Жабин1, Е.И. Курбаткина1
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА ВЕЛИЧИНУ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДНОСТИ В МЕТАЛЛИЧЕСКОМ КОМПОЗИЦИОННОМ МАТЕРИАЛЕ НА ОСНОВЕ АЛЮМИНИЯ
Представлены результаты экспериментальных исследований влияния различных режимов термической обработки (отжига) на величину удельной электропроводности в металлическом композиционном материале (МКМ) на основе алюминиевого сплава, армированного дискретными волокнами углерода. Показана проблема смачивания углеродных волокон жидким алюминием в процессе пропитки и предложены пути ее решения. Для проведения исследований изготовлены образцы металлического композиционного материала на основе алюминия по жидкофазной технологии с использованием метода принудительной пропитки. В работе также показано влияние объемной доли армирующего наполнителя на значение удельной электропроводности.
Ключевые слова: металлический композиционный материал (МКМ), углеродные волокна, удельная электропроводность, термическая обработка.
The article presents the experimental results analysis of the effect of different heat treatment (annealing) on the value of the conductivity of a composite material based on aluminum alloy reinforced with discrete carbon fibers. The problem of wetting of the carbon fibers by molten aluminum during infiltration and suggested ways to improve it was shown. Samples of aluminum metal matrix composite material using liquid-phase technology, such as the method offorced infiltration were prepared. Article also shows the influence of the volume fraction of the reinforcing filler to a value of conductivity.
Keywords: metal matrix composite (MMC), carbon fibers, specific electrical conductivity, heat treatment.
«‘Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт авиационных материалов» Государственный научный центр Российской Федерации
[Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» State research center of the Russian Federation] E-mail: [email protected]
Возможность реализации проектов создания новой техники, определяющих уровень научно-технического прогресса общества, в значительной мере обусловлена наличием материалов, отвечающих условиям их работы в конструкциях.
В настоящее время в связи с постоянно растущими требованиями специалистов в области перспективной авиационной, космической, автомобильной, судостроительной техники, а также энергетики, металлургии, связи, геологоразведки к повышению рабочих характеристик материалов, создание новых материалов является одной из ключевых задач современного материаловедения [1-5].
Одним из эффективных путей решения этой задачи является разработка металлических композиционных материалов (МКМ), сочетающих в одном материале компоненты с различными физико-механическими свойствами, позволяющие получать материал, обладающий уникальными характеристиками (показателями). МКМ отличаются важной особенностью, присущей всем композиционным материалам (КМ) — их свойства можно изменять в широких пределах в зависимости от доли армирования. Таким образом, возможно конструирование материала, максимально соответствующего условиям эксплуатации, с требуемым
комплексом физико-механических свойств. Одним из представителей данного класса материалов является МКМ на основе алюминиевого сплава, армированного непрерывными или дискретными волокнами углерода [6-10].
Разработкой МКМ системы Al-C занимаются в ведущих странах мира, таких как США, Япония, Великобритания, Германия, Китай, Франция и Канада. Например, данный МКМ нашел применение в качестве антенны для космического телескопа Hubble, поскольку обладает низкой плотностью, высоким модулем упругости и низким температурным коэффициентом линейного расширения (ТКЛР) [11]. МКМ на основе алюминиевого сплава, армированного дискретными волокнами углерода, может быть использован в качестве специальных датчиков или образцов-свидетелей, способных накапливать информацию о внешнем воздействии на изделие, конструкцию или техническое средство, а также в качестве теплоотводящих оснований [12]. Использование МКМ системы Al-С позволяет в несколько раз увеличить срок службы изделий из него и мощность установок, в которых они применяются [13, 14].
Целью данной работы является определение объемной доли армирующей фазы в МКМ, исследование влияния объемного содержания армиру-
ющей фазы и термической обработки на электропроводность в МКМ системы А1-С.
Материалы и методы
Технология принудительной пропитки при постоянном давлении — один из наиболее перспективных техпроцессов получения КМ на основе алюминиевого сплава, армированного дискретными волокнами углерода. Он менее энергозатра-тен, чем твердофазные технологии и позволяет получать заготовки сложной геометрической формы с минимальной механической обработкой [15, 16].
Технологический процесс получения МКМ на основе алюминиевого сплава, армированного дискретными волокнами углерода, заключается в принудительной пропитке (рис. 1) алюминиевым сплавом пористой заготовки из дискретных углеродных волокон, полученной методом шликерно-го формования.
Технология пропитки при изготовлении композиционных материалов, армированных дискретными волокнами, осложняется дисперсностью упрочняющей фазы, а значит, сложностью каналов движения матричного расплава при заполнении. При этом возникают три проблемы:
— решающее значение при заполнении имеет смачиваемость поверхности упрочняющей фазы алюминиевым матричным расплавом;
— самопроизвольная пропитка может происходить при краевом угле смачивания 9 Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
Объемное содержание дискретных волокон углерода в МКМ А1-С определяли с использованием весового метода по ГОСТ 18898-89 с предварительным растворением матрицы из КМ в соляной кислоте. Для этого образец МКМ взвешивался до и после растворения в соляной кислоте и по весовому процентному содержанию углерода и алюминия определялось объемное процентное содержание углеродного волокна.
Для проведения исследования влияния объемного содержания армирующей фазы и термической обработки на удельную электропроводность изготовили образцы МКМ системы А1-С по жид-кофазной технологии методом принудительной пропитки. В табл. 2 и на рис. 5 представлены результаты исследований.
На основании проведенных экспериментальных исследований определено, что значение удельной электропроводности уменьшается при увеличении объемной доли армирующей фазы. Оптимальная продолжительность отжига составляет 1 ч. Прирост удельной электропроводности по сравнению с образцами, отожженными в течение 30 мин, составил в зависимости от объемной доли армирующей фазы 3-7%, что связано с аннигиляцией дефектов и частичным восстановлением структурного совершенства композиционного материала. Увеличение продолжительности отжига не приводит к значительному росту удельной электропроводности.
1. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года //Авиационные материалы и технологии. 2012. №S. С. 7-17.
2. Каблов Е.Н. Современные материалы — основа инно-
вационной модернизации России //Металлы Евразии. 2012. №3. С. 10-15.
3. Тарасов Ю.М., Антипов В.В. Новые материалы ВИАМ — для перспективной авиационной техники производства ОАО «ОАК» //Авиационные материалы и технологии. 2012. №2. С. 5-6.
4. Алюминиевые сплавы /В кн. История авиационного
материаловедения. ВИАМ — 80 лет: годы и люди;
Под общ. ред. Е.Н. Каблова. М.: ВИАМ. 2012. С. 143-156.
5. Милейко С.Т. Композиты и наноструктуры //Композиты и наноструктуры. 2009. №1. С. 6-37.
6. Каблов Е.Н. Химия в авиационном материаловедении //Российский химический журнал. 2010. Т. К1У. №1. С. 3-4.
7. Каблов Е.Н., Щетанов Б.В., Гращенков Д.В., Шав-нев А.А., Няфкин А.Н. Металломатричные композиционные материалы на основе А—ЗЮ //Авиационные материалы и технологии. 2012. №S. С. 373-380.
S. Каблов E.H., Гращенков Д.В., Щетанов Б.В., Шав-нев A.A., Шфкин A.H., Вдовин С.М., Шщев K.H., Чибиркин В.В., Елисеев В.В., Эмих Л.A. Металлические композиционные материалы на основе Al-SiC для силовой электроники //Механика композиционных материалов и конструкций. 2O12. Т. 2. №3. С. 3S9-36S.
9. Карабасова Ю.С. Швые материалы. М.: МИСиС. 2OO2. 736 с.
10. Портной К.И., Салибеков С.Е., Светлов И.Л., Чуба-ров В.М. Структура и свойства композиционных материалов. М.: Машиностроение. 1979. 2SS с.
11. Chawla N., Chawla K.K. Metal Matrix Composites. 2006. P. 99-123.
12. Aбузин ЮА. Функциональные металлические композиционные материалы и технологии в машиностроении //Материалы в машиностроении. 2O1O. №6 (69). С. S2-S4.
13. Каблов E.H., Щетанов Б.В., Ивахненко Ю.A., Бали-нова ЮА. Перспективные армирующие высокотемпературные волокна для металлических и керамических композиционных материалов //Труды ВИ^М. 2O13. №2. Ст. OS (viam-works.ru).
14. Костиков В.И., Варенков A.H. Композиционные материалы на основе алюминиевых сплавов, армированных углеродными волокнами. М.: Интермет Инжиниринг. 2001. 528 с.
15. Hari Babu N., Zhongyun Fan, Eskin D.G. Application of external fields to technology of metalmatrixcompo-
site materials //TMS-2013 Annual Meeting Supplemental Proceedings. 2013. P. 1037-1044.
16. Ковтунов А.И., Мямин С.В. Исследование технологических и механических свойств слоистых тита-ноалюминиевых композиционных материалов, полученных жидкофазным способом //Авиационные материалы и технологии. 2013. №1. С. 9-12.
17. Костиков В.И., Антипов В.И., Кривцун В.М. и др. Исследование смачивания углеродных материалов расплавами металлических матриц /В сб. Композиционные материалы: сб. трудов. М.: Наука. 1981. С. 89-92.
18. Гончаренко Е.С., Трапезников А.В., Огородов Д.В. Литейные алюминиевые сплавы (к 100-летию со дня рождения М.Б. Альтмана) //Труды ВИАМ. 2014. №4. Ст. 02 (viam-works.ru).
19. Борисоглебский Ю.В., Галевский Г.В., Кулагин Н.М. Металлургия алюминия. Новосибирск: Наука. 1999. 437 с.
20. Каблов Е.Н., Чибиркин В.В., Вдовин С.М. Изготовление, свойства и применение теплоотводящих оснований из ММК Al-SiC в силовой электронике и преобразовательной технике //Авиационные материалы и технологии. 2012. №2. С. 20-22.
Алюминий проводит электрический ток или нет
Отправим материал на почту
- Сопротивление металла
- Иные свойства
- Электрические показатели алюминия
- Показатель прочности
- Стойкость к коррозии
- Срок службы
- Преимущества и недостатки алюминиевой проводки
- Положительные факторы
- Недостатки металла
- Медь и алюминий
- Заключение
Алюминий проводит ток, кроме того, металл является одним из лучших существующих проводников. Из него изготавливают токопроводящие шины, кабельные наконечники и гильзы, кабель для воздушных линий электропередач, СИП (самонесущий изолированный провод) и провода меньшего сечения (для бытовых или производственных нужд), коаксиальный телевизионный кабель.
Сопротивление металла
Алюминий хорошо проводит ток, это металл, обладающий малым удельным весом, легко поддающийся литью и иным способам обработки. Показатель электропроводности ставит его на 4 место, уступая лишь серебру, меди и золоту.
Интересно! Хотя по ряду характеристик алюминий лучше меди, в условиях долгосрочной эксплуатации он не так предпочтителен из-за высокой хрупкости и ломкости.
Относительно показателя сопротивления алюминия, в электротехнической отрасли различают 2 термина:
- Значение электропроводности, величина которого характеризует скорость передачи электрического тока из пункта «А» в пункт «Б». Чем выше цифра, тем лучше металл осуществляет транспортировку напряжения. Например, при температуре 20°С, меди свойственно значение 59,5 млн. См/м (Сименс на метр). Алюминию всего 38 млн. см/м.
- Показатель электросопротивления. Чем больше значение, тем сложнее передаётся электричество. Удельный показатель медного провода равен 1,01724-0,0180 мкОм/м (микроОм — метр), алюминиевого – 0,0262-0,0295 мкОм/м.
Важно! Одним словом, алюминий хороший проводник тока. Имеет отличные показатели проводимости и сопротивления, но всё же уступает меди.
Иные свойства
Сегодня алюминия производится практически в 2 раза больше, чем меди. А в сравнении со всеми добываемыми металлами, он уступает только стали. Это подтверждает, что с каждым годом электротехническая отрасль наращивает обороты его использования. Объясняется это целым рядом причин, которые мы рассмотрим далее.
Электрические показатели алюминия
Согласно «Международному стандарту по отожженной меди» (IACS), последней присвоен показатель в 100% проводимости. В соответствии с вышеперечисленной информацией, алюминий проводит электричество лишь со значением в 61% в эквиваленте общепринятому стандарту.
Таким образом, равное процентное соотношение будет достигнуто только при больших поперечных сечениях. В виду того, что медь существенно тяжелее алюминия, такой «увеличенный» в массе проводник всё равно окажется легче медного.
Этот факт доказан путём сложных математических расчётов, результат которых показывает, что 1 кг. алюминия обеспечивает равную скорость проводимости, что 2 кг. меди. Потому, если этого не требуют определённые технические условия к размеру проводников, медь заменяется алюминием.
Полезно! Если для использования в домашней проводке вес электрического провода особой роли не имеет, то в применении на ВЛЭ (воздушных линиях электропередач) масса токоведущих жил сказывается значительно. Поэтому берётся тот, который легче, то есть алюминиевый.
Показатель прочности
При условии одинакового сечения медные жилы прочнее алюминиевых. Хотя, этот показатель легко увеличить за счёт легирования или термомеханической обработки, либо увеличить сечение.
Значения, приведённые в таблице, показывают, что алюминий проводит ток, но уступает меди в показателе «на разрыв». Тем не менее, он способен выдерживать собственный вес и не так перегружает опоры ВЛЭ, как медный.
Помимо этого, прессование алюминия подразумевает получение поперечных сечений сложных форм, чего нельзя получить из стали. Исходя из таких объективных причин новые элементы могут быть сконструированы так, что они окажутся наиболее эффективными в сравнении с допустимыми аналогами из других материалов.
Стойкость к коррозии
Алюминий не требует дополнительного окрашивания или покрытия цинком с целью защиты от коррозии. Естественное покрытие оксида предохраняет металл от последующего контакта с кислородом в воздухе и не допускает его дальнейшего окисления.
Интересно! При механическом повреждении защитного оксидного слоя, он мгновенно восстанавливается естественным путём
Срок службы
Продолжительность эксплуатации зависит от целого ряда условий. В первую очередь это температура и влажность. Хотя официально и озвучиваются цифры в 30 лет для меди и 15 для алюминия, на практике кабеля «отрабатывают» гораздо больше. В качестве примера можно привести дома сталинской или хрущёвской постройки. В некоторых из них до сих пор сохранилась «родная» электропроводка. Однако официальная информация озвучивается именно такими сроками.
Интересно! Иногда высказывается мнение, что такая электропроводка в доме опасна и может привести к возгоранию в результате перегрева контактов. Но такое может произойти с любым металлом, а причина скрывается не в его свойствах, а в плохом соединении или перегрузке линии. Аналогичные инциденты часто случаются в домах советской постройки. При проектировании квартир в 70-80-е гг. прошлого века никто не предполагал, что через несколько десятилетий они окажутся «наполнены» электроприборами, требующими большего сечения.
Преимущества и недостатки алюминиевой проводки
Повальное применение алюминиевой проводки практиковалось в зданиях старой постройки. Основный критерий в те времена был – лёгкая доступность и низкая себестоимость металла. Вероятности недостатка сечения кабеля в те времена не рассматривались из-за отсутствие электрической бытовой техники в квартирах среднестатистических граждан.
Положительные факторы
Небольшая масса алюминиевого провода делает его популярным при монтаже высоковольтных линий электропередач. Это условие уже озвучивалось ранее, поэтому рассмотрим ещё ряд иных аспектов:
- Сравнительно низкая цена металла и изделий из него. Этот фактор играет роль при прокладывании длинных линий. Например, для полной электрификации загородного дома может понадобиться более 1 000 м. провода.
- Стойкость к химическим окислениям. Это условие актуально с учетом того, что жилы скрыты пластмассовой изоляцией.
- Стойкость участков, не имеющих изоляции. Как упоминалось ранее, на поверхности алюминия образуется защитная плёнка, которая не допускает возникновения окислительных процессов.
Недостатки металла
Несмотря на то, что алюминий проводит ток и имеет ещё целый спектр отличительных характеристик, повсеместного использования такой проводки не произошло по следующим причинам:
- Металлу свойственен высокий показатель удельного сопротивления с соответственной склонностью к нагреву и последующему возгоранию. В связи с этим для электрификации коттеджа не рекомендуется использовать алюминиевый провод с сечением менее 16 мм.
- При постоянно нагрузке (длительном подключении энергопотребителей), ослабляются контакты. Объясняется этот факт частым нагревом и остыванием участков.
- Алюминиевые жилы намного быстрее переламываются в результате изгиба, что существенно снижает срок службы.
Медь и алюминий
Необходимость замены участка электропроводки может возникнуть при разных обстоятельствах (при повреждении, прокладке дополнительной ветви, иных причинах). В этой ситуации соединяется «медь с медью» или «медь с алюминием». Контакты из разных металлов требуют особого внимания, а причина кроется в следующем:
- Отличаются разным удельным сопротивлением. Даже прочно закрученный контакт со временем ослабнет из-за склонности алюминия к тепловому расширению.
- Медь также имеет оксидную защитную плёнку. Однако от алюминиевой она отличается разным сопротивлением, в результате чего это отражается в повышении температуры контакта.
Важно! Находящиеся под нагрузкой соединения способны стать источником появления искр, что негативно сказывается на пропускной способности жилы и может стать причиной возникновения пожара.
Соединение медного и алюминиевого провода допустимо. Однако для этого необходимо придерживаться следующих способов:
- Предварительно залудить медь паяльником и припоем.
- Обработать контакт специальной антиокислительной смазкой.
- Использовать специальные металлические приспособления (переходники): «Орешек»; Выполнено из 3 параллельных пластин, в которым между крайними закладывается токоносящая жила; Клеммные самозажимные или винтовые колодки; Опрессовка; Болтовое соединение; Пружинные клеммы.
Заключение
Алюминий проводит ток, кроме того, металл является отличным и надёжным проводником. Кроме того, все существующие линии электропередач (в том числе и высоковольтные) изготовлены из него. Также он может использоваться для электрификации коттеджа и прокладки внутренних коммуникаций. Единственное, на что следует обратить внимание – соответствие сечения кабеля заявленным мощностям будущих потребителей.