E-polirovka.ru


труба 40х20 Универсальность стальной профилированной трубы при устройстве забора заключается в возможности крепления к таким стойкам секций ограждающих конструкций из различных материалов: сетки, профилированного листа, дерева, пластика или металла, устанавливать забор любой высоты и конфигурации. А при изготовлении металлоконструкций профильная труба имеет отличные сварные характеристики, что значительно ускоряет процесс монтажа. Выбор стальной профилированный трубы – идеальный вариант...
22 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего нужна алюминиевая руда?

Добыча алюминия: добыча алюминиевой руды и получение металла

На сегодняшний день алюминий — один из самых популярных металлов, который используется как во многих отраслях промышленности, так и в повседневной жизни каждого человека. Удивительно, что этот металл, всего полтора века назад считавшийся дороже золота, занял прочную позицию на рынке и продолжает быть очень востребованным.

  • Различия по насыщенности
  • Свойства алюминиевой руды
  • Технология разработки алюминиевых залежей
  • Способы добычи алюминиевой руды
  • Применение алюминиевой руды
  • Альтернатива алюминиевым рудам

Различия по насыщенности

Алюминиевая руда представляет собой горную породу, из которой добывают металл. Алюминий не существует в чистом виде в природе, это химический элемент, который можно найти во многих соединениях, но различной насыщенности. По причине наибольшей рентабельности в настоящее время добыча алюминия производится из бокситов, алунитов и нефелинов.

Наибольшую концентрацию оксида алюминия содержат бокситы (50 % и более). Они являются главным источником глинозема, то есть основного сырья, из которого производится алюминий.

На втором месте по концентрации алюминия в составе находятся алуниты, которые содержат до 40 % глинозема.

На третьей позиции обосновались нефелины. Они представляют собой щелочное образование, которое содержит до 25 % глинозема.

Все остальные соединения содержат глинозем в меньшей концентрации, и нерентабельны в процессе добычи алюминия.

Свойства алюминиевой руды

Алюминий высоко ценился у наших предков, которые открыли этот металл почти два столетия назад, и не теряет актуальности по сей день. Ниже представлены главные свойства алюминия, благодаря которым этот металл особенно ценен:

  • относится к группе легких металлов;
  • огромные залежи — алюминий занимает третье место после кислорода и кремния с точки зрения распространения на Земле;
  • высокая степень пластичности — металл легко поддается механической обработке, литью, полировке и пр.;
  • обладает высокой степенью тепло- и энергопроводимости;
  • высокая отражательная способность — до 90 %;
  • стойкость к коррозии;
  • приятный блестящий внешний вид.

Технология разработки алюминиевых залежей

Наиболее важную роль в получении алюминия играют бокситы, в которых наибольшая концентрация глинозема. Сам по себе боксит — это сложная горная порода, и его добыча опирается на нескольких основных способов:

  • открытый — считается основным и наиболее популярным методом, который используется, если алюминиевая руда залегает неглубоко (чаще всего это именно бокситы);
  • подземный (иначе — шахтный) способ. Этот метод извлечения алюминиевой руды схож по принципу с добычей каменного угля в шахтах (отсюда название).

При выборе метода обработки месторождения алюминиевой руды учитываются такие факторы, как тип месторождения, а также геологические условия его залегания (например, горизонтальное или наклонное).

Процесс срезания пластов алюминиеносных пород земли зависит также во многом от их вида и структуры. Ниже представлены два наиболее распространенных метода:

  1. Срезка фрезерным способом, когда на помощь приходят карьерные комбайны. Благодаря этим машинам (различным также по своим свойствам в зависимости от модели) происходит срез пласта, толщина которого может достигать 600 мм. Алюминиевые породы обрабатываются таким образом постепенно. После снятия каждого слоя образуются так называемые «полки».
  2. Альтернативой фрезерной разработки алюминиевой руды, в особенности рыхлой, является работа карьерных экскаваторов. Этот способ применяется, если необходимо сразу погрузить руду на самосвалы с целью дальнейшей транспортировки.

Способы добычи алюминиевой руды

Прямо из руды добыть алюминий невозможно, он слишком быстро окисляется. По этой причине ценный металл получают в несколько стадий:

  1. Добывание глинозема (окись алюминия) из алюминиевых руд с последующей транспортировкой при помощи самосвалов на обогатительные комбинаты.
  2. Получение алюминия из глинозема — самая сложная и трудоемкая часть процесса:
  • минералы измельчают при помощи дробильных аппаратов;
  • затем спекают в печах;
  • впоследствии происходит выщелачивание при помощи крепких щелочей — период обработки сырья. Стоит отметить, что добывание глинозема может осуществляться различными способами: кислотным, электролитическим и щелочным. Наиболее популярный метод именно щелочной, его использовали еще в 18 в.;
  • декомпозиция, т. е. процесс, в котором полученная алюминатная пульпа попадает на сепарацию, где жидкая составляющая выпаривается;
  • рафинирование алюминия, иначе — очищение от лишних щелочей;
  • прокаливание в печах — завершающий этап.

В результате сложнейших операций получается сухой глинозем. Из этого сырья получают чистый алюминий при помощи гидролизной обработки.

Для того чтобы получить 1 тонну чистого алюминия, необходимо добыть 2 тонны глинозема. Такое количество глинозема будет содержаться примерно в 4–4,5 тоннах боксита. Количество алунитов или нефелитов должно быть, соответственно, еще больше. Легко сделать вывод, что добыча и производство алюминия — это непростой, энергоемкий и затратный процесс.

Применение алюминиевой руды

Современный мир трудно представить себе без алюминия. Спектр его применения очень широк, и мы иногда не представляем себе, насколько важен этот метал в нашей жизни.

Алюминий широко применяется в машино- и автостроении, авиации, строительстве, стекольной промышленности, а также при производстве электротехники и других мелких товаров народного потребления (например, фольга).

Особенно интересным фактом является то, что алюминий присутствует в нашей жизни также в качестве пищевой добавки под кодом Е173. В качестве пищевого красителя эта добавка разрешена в ряде стран, в том числе и в России. Наиболее часто данный краситель используется в кондитерской отрасли благодаря тому, что он придает изделиям красивый серебристый оттенок. Тем не менее, это небезопасная добавка, и врачи настоятельно рекомендуют потреблять ее очень умеренно и с осторожностью.

Алюминиевая руда имеет богатый состав, и кроме алюминия из нее извлекают другие химические элементы. В основном это цветные металлы, которые в дальнейшем используются для улучшения качества стали, а также титан, ванадий, хром и др.

Извлеченный глинозем также полезен в черной металлургии, где он используется в качестве флюсов.

Во время плавления руды, извлеченной из бокситов, в электропечах получается еще один материал, который называется электрокорундом. Он особенно ценен благодаря своей твердости (уступает только алмазу) и востребован в качестве абразива.

Во время процесса получения алюминия образуются также отходы, которые носят название красный шлам. В их составе элемент скандий, особенно востребованный во многих отраслях как тяжелой (автомобильная, ракетостроительная), так и легкой (производство электроприводов, спортивного оборудования) промышленности.

Альтернатива алюминиевым рудам

Ученые сходятся во мнении, что в настоящее время достойной альтернативы алюминию не существует. Возможно, в будущем удастся найти или создать еще более функциональный и относительно дешевый металл, однако на сегодняшний день алюминий — безусловный лидер.

Алюминиевая руда — от добычи до получения металла. Страны-лидеры по добыче алюминия

В сравнении с традиционными металлами (сталью, медью, бронзой), алюминий — молодой металл.

  • Бокситовая руда – основа мирового производства алюминия
  • Свойства алюминиевой руды
  • Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды
  • Страны лидеры по добыче алюминиевых руд
  • Разработка месторождений алюминиевых руд в России
  • Применение алюминиевой руды
  • Альтернатива алюминиевым рудам

Современный способ его получения был разработан только в 1886 году, а до этого он был очень редким. Промышленные масштабы «крылатого» металла начались лишь в 20 веке. Сегодня, это один из востребованных материалов в различных отраслях от электроники до космической и авиационной промышленности.

Впервые алюминиевая руда в виде серебристого металла была получена в 1825 году в объеме всего лишь нескольких миллиграмм, и до появления массового производства этот металл был дороже золота. Например, одна из королевских корон Швеции имела в своем составе алюминий, а Д. И. Менделеев в 1889 году получил от британцев дорогой подарок – весы из золота и алюминия.

Какое сырье необходимо для получения алюминиевой руды? Как производят один из самых необходимых в современности материалов?

Бокситовая руда – основа мирового производства алюминия

Непосредственно сам серебристый металл получают из глинозема. Это сырье представляет собой оксид алюминия (Аl2О3), получаемый с руд:

  • Бокситов;
  • Алунитов;
  • Нефелиновых сиенитов.

Самый распространенный источник получения исходного материала это бокситы, их и считают основной алюминиевой рудой.

Несмотря на уже более чем 130 летнюю историю открытия, понять происхождение алюминиевой руды до сих пор не удалось. Возможно, что попросту в каждом регионе сырье образовалось под воздействием определенных условий. И это создает затруднения, чтобы вывести одну универсальную теорию об образовании бокситов. Основных гипотез происхождения алюминиевого сырья три:

  1. Они образовались вследствие растворения некоторых типов известняков, как остаточный продукт.
  2. Боксит получился в результате выветривания древних пород с дальнейшим их переносом и отложением.
  3. Руда является результатом химических процессов разложения железных, алюминиевых и титановых солей, и выпала как осадок.

Однако, алунитовые и нефелиновые руды образовывались в отличных условиях от бокситов. Первые формировались в условиях активной гидротермальной и вулканической деятельности. Вторые — при высоких температурах магмы.

Алюминиевая руда

Как результат, алуниты, в основном, имеют рассыпчатую пористую структуру. В их составе имеется до 40% различных оксидных соединений алюминия. Но, кроме собственно самой алюмниеносной руды в залежах, как правило, имеются добавки, что влияет на рентабельность их добычи. Считается выгодным разрабатывать месторождение при 50-ти процентном соотношении алунитов к добавкам.

Нефелины обычно представлены кристаллическими образцами, которые кроме алюминиевого оксида содержат добавки в виде различных примесей. Зависимо от состава, такой тип руды классифицируют по типам. Самые богатые имеют в своем составе до 90% нефелинов, второсортные 40-50%, если минералы беднее этих показателей, то не считается нужным вести их разработку.

Имея представления, о происхождении полезных ископаемых, геологическая разведка может довольно точно определить места нахождения залежей алюминиевых руд. Также условия формирования, влияющие на состав и структуру минералов, определяют способы добычи. Если месторождение считается рентабельным, налаживают его разработку.

Свойства алюминиевой руды

Боксит представляет собой сложное соединение оксидов алюминия, железа и кремния (в виде различных кварцев), титана, а также с небольшой примесью натрия, циркония, хрома, фосфора и прочих.

Самым важным свойством в производстве алюминия является «вскрываемость» бокситов. То есть насколько просто будет отделить от него ненужные кремниевые добавки, чтобы получить исходное сырье для выплавки металла.

Основа получения алюминия – глинозем. Чтобы он образовался, руду перемалывают в мелкий порошок, и прогревают паром, отделяя большую часть кремния. И уже эта масса будет сырьем для выплавки.

Чтобы получить 1 тонну алюминия, потребуется около 4-5 тонн бокситов, с которых после обработки образуется около 2 тонн глинозема, а уже потом можно получить металл.

Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды

При незначительной глубине залегания алюминиеносных пород их добыча ведется открытым способом. Но, сам процесс срезания пластов руды будет зависеть от ее вида, и структуры.

  • Кристаллические минералы (чаще бокситы, или нефелины), снимают фрезерным способом. Для этого используются карьерные комбайны. Зависимо от модели такая машина может вести срез пласта толщиной до 600 мм. Толща породы разрабатывается постепенно, образуя после прохода одного слоя полки.

Это делается для безопасного положения кабины оператора и ходовых механизмов, которые в случае непредвиденного обвала будут находиться на безопасном расстоянии.

  • Рыхлые алюминиевоносные породы исключают использование фрезерной разработки. Так как их вязкость забивает режущую часть машины. Чаще всего такие типы пород могут срезать при помощи карьерных экскаваторов, которые тут же грузят руду на самосвалы, для дальнейшей транспортировки.

Транспортирование сырья — это отдельная часть всего процесса. Обычно обогатительные комбинаты по возможности стараются возводить неподалеку от разработок. Это позволяет использовать ленточные транспортеры для подачи руды на обогащение. Но, чаще изъятое сырье перевозят самосвалами.
Следующий этап, обогащение и подготовка породы для получения глинозема.

  1. Руду при помощи ленточного транспортера перемещают в цех подготовки сырья, где может использоваться насколько дробильных аппаратов, измельчающих минералы поочередно до фракции приблизительно в 110 мм.
  2. Второй участок подготовительного цеха осуществляет подачу подготовленной руды, и дополнительных добавок на дальнейшую переработку.
  1. Следующий этап подготовки, это спекание породы в печах.
Читать еще:  Чем снять окисление с алюминия?

Также на этом этапе, возможна обработка сырья выщелачиванием крепкими щелочами. Результатом становится жидкий алюминатный раствор (гидрометаллургическая обработка).

  1. Алюминатный раствор проходит стадию декомпозиции. На данном этапе получают алюминатную пульпу, которую в свою очередь отправляют на сепарацию, и выпаривание жидкой составляющей.
  2. После чего данную массу очищают от ненужных щелочей, и направляют на прокалку в печах. В результате такой цепочки образуется сухой глинозем необходимый для получения алюминия путем гидролизной обработки.

Сложный технологический процесс требует большого количества топлива, и известняка, а также электроэнергии. Это является основным фактором расположения алюминиевых комбинатов – возле хорошей транспортной развязки, и нахождения рядом залежей необходимых ресурсов.

Однако существует и шахтный способ извлечения, когда порода из пластов вырубается по принципу добычи каменного угля. После чего руду отправляют на подобные производства по обогащению, и извлечению алюминия.

Одна из самых глубоких «алюминиевых» штолен находится на Урале в России, ее глубина достигает 1550 метров!

Страны лидеры по добыче алюминиевых руд

Основные месторождения алюминия сосредоточены в регионах с тропическим климатом, а большая часть 73% залежей приходятся на всего 5 стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Из них самые богатые запасы имеет Гвинея более 5 млрд. тонн (28%от мировой доли).

Если разделить запасы и объемы по добыче, то можно получить следующую картину:

  • 1-е место – Африка (Гвинея).
  • 2-е место – Америка.
  • 3-е место – Азия.
  • 4-е место – Австралия.
  • 5-е – Европа.

Пятерка лидеров стран по добыче алюминиевой руды представлена в таблице

СтранаОбъемы добычи млн. тонн
Китай86,5
Австралия81,7
Бразилия30,7
Гвинея19,7
Индия14,9

Также к основным добытчикам алюминиевых руд относятся: Ямайка (9,7 млн. т.), Россия (6,6), Казахстан (4,2), Гайана (1,6).

Разработка месторождений алюминиевых руд в России

В нашей стране есть несколько богатых залежей алюминиевых руд, сосредоточенных на Урале, и в Ленинградской области. Но, основным способом добычи бокситов у нас, является более трудоемкий закрытый шахтный метод, которым извлекают около 80% от общей массы руд в России.

Лидеры по разработке месторождений – акционерное общество «Севуралбокситруда», АО Бакситогорский глинозем, Южно-Уральские бокситовые рудники. Однако их запасы исчерпываются. Вследствие чего России приходится импортировать около 3 млн. тонн глинозема в год.

МесторождениеЗапасы
Красная Шапочка (Урал)На 19 лет добычи
Горностайское и Горностайско-КраснооктябрьскоеНа 18 лет добычи
Блиново-Каменское10 лет
Кургазское10 лет
Радынский карьер7 лет

В общей сложности на территории страны разведано 44 месторождения различных алюминиевых руд (бокситов, нефелинов), которых по оценкам, должно хватить на 240 лет, при такой интенсивности добычи как сегодня.

Импорт глинозема обусловлен низким качеством руды в залежах, например, на месторождении Красная Шапочка добывают боксит с 50% глиноземным составом, тогда как в Италии извлекают породу с 64% оксида алюминия, а в Китае 61%.

Применение алюминиевой руды

В основном до 60% рудного сырья используется для получения алюминия. Однако богатый состав позволяет извлекать из него, и другие химические элементы: титан, хром, ванадий и прочие цветные металлы, необходимые в первую очередь в качестве легирующих добавок для улучшения качеств стали.

Как вспоминалось выше технологическая цепочка получения алюминия обязательно проходит через стадию образования глинозема, который также используют в качестве флюсов в черной металлургии.

Богатый состав элементов в алюминиевой руде используется и для производства минеральной краски. Также способом плавки производится глиноземный цемент – быстро застывающая прочная масса.

Еще один материал, получаемый из бокситов – электрокорунд. Его получают путем плавления руды в электропечах. Это очень твердое вещество, уступающее только алмазу, что делает его востребованным в качестве абразива.

Также в процессе получения чистого металла образуются отходы – красный шлам. Из него извлекают элемент – скандий, который применяется в производстве алюминиево-скандиевых сплавов, востребованных в автомобильной промышленности, ракетостроении, выпуске электроприводов, и спортивного оборудования.

Альтернатива алюминиевым рудам

Развитие современного производства требует все больших объемов алюминия. Однако не всегда рентабельно разрабатывать месторождения, или импортировать глинозем из-за границы. Поэтому все чаще используется выплавка металла с использованием вторичного сырья.

Например, такие страны как США, Япония, Германия, Франция, Великобритания в основном производят вторичный алюминий, по объемам составляющий до 80% от общемировой выплавки.

Вторичный металл обходится намного дешевле, в сравнении с первичным, для получения которого тратится 20000 кВт энергии/1 тонну.

На сегодня алюминий, получаемый с различных руд, один из востребованных материалов позволяющих получать прочные и легкие изделия, не поддающиеся коррозии. Альтернатив металлу пока не найдено, и в ближайшие десятилетия объемы добычи руды, и выплавки будут только расти.

Использование алюминиевых руд

Алюминиевые руды, как известно, иногда содержат, кроме алюминия, в значительном количестве кремний, железо, титан, калий, натрий, кальций, а также в небольшом количестве цирконий, хром, фосфор, галлий, ванадий и некоторые другие элементы. Однако далеко не все из этих элементов в настоящее время извлекаются из алюминиевых руд и используют для нужд народного хозяйства.

Наиболее полно используют апатито-нефелиновую породу, из которой получают удобрения, глинозем, соду, поташ, цемент и некоторые другие продукты; отвалов почти нет.

При переработке бокситов по способу Байера или спеканием в отвале еще остается много красного шлама, рациональное использование которого заслуживает большого внимания.

Ранее говорилось о том, что для получения 1 т алюминия необходимо затратить много электроэнергии, составляющей пятую часть себестоимости алюминия. В табл. 55 приведена калькуляция себестоимости 1 т алюминия. Из данных, приведенных в таблице, следует, что важнейшими составляющими себестоимости являются сырье и основные материалы, причем на долю глинозема падает почти половина всех расходов. Следовательно, снижение себестоимости алюминия должно в первую очередь идти в направлении уменьшения расходов на производство глинозема.

Теоретически на 1т алюминия необходимо затратить 1,89 т глинозема. Превышение этой величины при фактическом расходе является следствием потерь главным образом от распыления. Эти потери можно уменьшить на 0,5—0,6% путем автоматизации загрузки глинозема в ванны. Снижение себестоимости глинозема можно достичь сокращением потерь на всех стадиях его производства, особенно в отвальном шламе, при транспортировке алюминатных растворов и гидроокиси, а также во время кальцинации глинозема; за счет экономии, полученной от лучшего использования отработанного пара (из самоиспарителей) и полного использования тепла отходящих газов. Это особенно важно для автоклавного способа, расходы на пар в котором значительны.

Внедрение непрерывного выщелачивания и выкручивания на; передовых глиноземных заводах позволило автоматизировать многие операции, что способствовало снижению расхода пара, электроэнергии, повышению производительности труда и снижению себестоимости алюминия. Однако в этом направлении можно сделать еще многое. Не отказываясь от дальнейших поисков высокосортных бокситов, переход на которые резко сократит стоимость глинозема, следует искать пути комплексного использования железистых бокситов и красных шламов в черной металлургии. В качестве примера может служить комплексное использование апатито-нефелиновых пород.

Расходы на фтористые соли составляют 8%. Снизить их можно путем тщательного отвода газов от электролитных ванн улавливания из них фтористых соединений. Анодные газы, отсасываемые из ванны, содержат до 40мг/м 3 фтора, около 100мг/м 3 смолы и 90мг/м 3 пыли (AlF3, Al2O3, Na3AlF6). Эти газы нельзя выбрасывать в атмосферу, так как они содержат ценные вещества, кроме того, они ядовиты. Их необходимо очищать от ценной пыли, а также обезвреживать во избежание отравления атмосферы цеха и близлежащих к заводу районов. В целях очистки газы промывают слабыми растворами соды в башенных газоочистителях (скрубберах).

При совершенной организации процессов очистки и обезвреживания создается возможность вернуть в производство часть фтористых солей (до 50%) и тем самым снизить себестоимость алюминия на 3—5%.

Значительное снижение себестоимости алюминия может быть достигнуто за счет применения более дешевых источников электроэнергии и быстрого повсеместного внедрения более экономичных полупроводниковых преобразователей тока( особенно, кремниевых), а также за счет сокращения расхода электроэнергии непосредственно на электролиз. Последнее может быть достигнуто путем конструирования более совершенных ванн с меньшей потерей напряжения во всех или в отдельных их элементах, а также путем подбора более электропроводных электролитов (сопротивление криолита слишком велико и огромное количество электроэнергии переходит в избыточное тепло, которое пока невозможно рационально использовать). И не случайно, что ванны с обожженными анодами начинают находить все большее и большее применение, так как расход электроэнергии на этих ваннах значительно ниже.

Большую роль в снижении расхода электроэнергии играет обслуживающий персонал электролизных цехов. Поддержание нормального межполюсного расстояния, содержание в чистоте электрических контактов в различных местах ванны, снижение количества и продолжительности анодных эффектов, поддержание нормальной температуры электролита, внимательное наблюдение за составом электролита дают возможность значительно снизить расход электроэнергии.

Передовые бригады электролизных цехов алюминиевых заводов изучив теоретические основы процесса и особенности обслуживаемых ими ванн, тщательно наблюдая за ходом процесса, имеют возможность увеличить количество получаемого металла на единицу расходуемой электроэнергии при отличном его качестве и, следовательно, повысить эффективность производства алюминия.

Важнейшим фактором снижения себестоимости и повышения производительности труда является механизация трудоемких процессов в электролизных цехах алюминиевых заводов. В этой области на отечественных алюминиевых заводах за последние десятилетия достигнуты значительные успехи: механизировано извлечение алюминия из ванн; внедрены производительные и удобные механизмы для пробивки корки электролита и извлечения и забивки штырей. Однако нужно и можно в большей степени механизировать и автоматизировать процессы на алюминиевых заводах. Этому способствует дальнейшее увеличение мощности электролизеров, переход от периодических процессов к непрерывным.

В последние годы комплексное использование алюминиевых руд улучшилось в связи с тем, что некоторые алюминиевые заводы приступили к извлечению из отходов окислов ванадия и металлического галлия.

Галлий был открыт в 1875 г. спектральным методом. За четыре года , до этого Д. И. Менделеев с большой точностью предсказал его основные свойства (назвав экаалюминием). Галлий имеет серебристо-белый цвет и низкую температуру плавления (+30° С). Небольшой кусочек галлия может быть расплавлен на ладони. Наряду с этим температура кипения галлия довольно высока (2230°С), поэтому его используют для высокотемпературных термо метров. Такие термометры с кварцевыми трубками применимы до 1300° С. По твердости галлий близок к свинцу. Плотность твердого галлия 5,9 г/см 3 , жидкого 6,09 г/см 3 .

Галлий рассеян в природе, богатые им минералы неизвестны. Он встречается в сотых и тысячных долях процента в алюминиевых рудах, цинковых обманках и золе некоторых углей. Смолы газовых заводов иногда содержат до 0 ,75% галлия.

По ядовитости галлий значительно превосходит ртуть и мышьяк, поэтому все работы по его извлечению следует проводить, соблюдая тщательную гигиену.

В сухом воздухе при обычных температурах галлий почти не окисляется: при нагревании он энергично соединяется с кислородом, образуя белый окисел Ga2О3. Наряду с этим окислом галлия при определенных условиях образуются и другие его окислы (GaO и Ga2О). Гидроокись галлия Ga(OH)3 амфотерна и поэтому легко растворима в кислотах и щелочах, с которыми образует галлаты, близкие по свойствам к алюминатам. В связи с этим при получении глинозема из алюминиевых руд галлий вместе с алюминием переходит в растворы в затем сопутствует ему во всех последующих операциях. Некоторая повышенная концентрация галлия наблюдается в анодном сплаве при электролитическом рафинировании алюминия, в оборотных алюминатных растворах при производстве глинозема по способу Байера и в маточных растворах, остающихся после неполной карбонизации алюминатных растворов.

Читать еще:  Сварка алюминия аргоном на постоянном токе

Поэтому, не нарушая схемы переделов, в глиноземных и рафинировочных цехах алюминиевых заводов, можно организовать извлечение галлия. Оборотные алюминатные растворы для извлечения галлия можно периодически карбонизировать в два приема. Вначале при медленной карбонизации осаждают примерно 90% гидроокиси алюминия и отфильтровывают раствор, который затем карбонизируют повторно для того, чтобы осадить в виде гидроокисей галлий и оставшийся еще в растворе алюминий. Полученный таким путем осадок может содержать до 1,0% Ga2О3.

Значительную часть алюминия можно осадить из алюминатного маточного оборотного раствора в виде фтористых солей. Для этого в алюминатный раствор, содержащий галлий, примешивают плавиковую кислоту. При рН

При нейтрализации кислого раствора содой до рН = 6, осаждаются галлий и алюминий.

Дальнейшего отделения алюминия от галлия можно дос тичь, обрабатывая алюминиево-галлиевые гидратные осадки в автоклаве известковым молоком, содержащим небольшое количество едкого натра; при этом галлий переходит в раствор, а основная часть алюминия остается в осадке. Затем галлий осаждают из раствора углекислым газом. Полученный осадок содержит до 25% Ga2О3. Этот осадок растворяют в едком натре при каустическом отношении 1,7 и обрабатывают Na2S для очистки от тяжелых металлов, особенно от свинца. Очищенный и осветленный раствор подвергают электролизу при 60—75° С, напряжении 3—5 В и постоянном перемешивании электролита. Катоды и аноды должны быть сделаны из нержавеющей стали.

Известны и другие способы концентрации окиси галлия из алюминатных растворов. Так, из остающегося после электролитического рафинирования алюминия по трехслойному методу анодного сплава, содержащего 0,1—0,3% галлия, последний может быть выделен путем обработки сплава горячим раствором щелочи. При этом алюминий и галлий переходят в раствор, а медь и железо остаются в осадке.

Для получения чистых соединений галлия используют способность хлорида галлия растворяться в эфире.

Если в алюминиевых рудах присутствует ванадий, он будет постоянно накапливаться в алюминатных растворах и при содержании более 0,5 г/л V2O5 выпадать с гидратом алюминия при карбонизации в осадок и загрязнять алюминий. Для очистки от ванадия маточные растворы упаривают до плотности 1,33 г/см 3 и охлаждают до 30° С, при этом выпадает шлам, содержащий более 5% V2O5, наряду с содой и другими щелочными соединениями фосфора и мышьяка, из которых он может быть выделен сначала сложной гидрохимической переработкой, а затем электролизом водного раствора.

Расплавление алюминия из-за его большой теплоемкости и скрытой теплоты плавления (392Дж/г) требует больших расходов энергии. Поэтому заслуживает распространения опыт электролизных заводов, начавших получение ленты и катанки непосредственно из жидкого алюминия (без разливки в слитки). Кроме того, большой экономический эффект может дать получение из жидкого алюминия в литейных цехах электролизных заводов различных сплавов массового потребления, а также заготовок из них, предназначенных для обработки давлением.

Статья на тему Использование алюминиевых руд

АЛЮМИНИЕВАЯ ПРОМЫШЛЕННОСТЬ

АЛЮМИНИЕВАЯ ПРОМЫШЛЕННОСТЬ. В 1854 А.Девиль изобрел первый практический способ промышленного производства алюминия. Рост производства был особенно быстрым во время и после Второй мировой войны. Производство первичного алюминия (без учета производства Советского Союза) составляло только 620 тыс. т в 1939, но возросло до1,9 млн. т в 1943. К 1956 во всем мире производилось 3,4 млн. т первичного алюминия; в 1965 мировое производство алюминия составило 5,4 млн. т, в 1980 – 16,1 млн. т, в 1990 – 18 млн. т.

Производство алюминия включает три основные стадии: добыча и обогащение руды; получение из руды чистой окиси алюминия (глинозема); восстановление алюминия из окиси путем электролиза.

Добыча и обогащение руды.

Основная алюминиевая руда – бокситы – добывается главным образом в карьерах; крупнейшими производителями бокситов являются Австралия, Гвинея, Ямайка и Бразилия. Обычно слой руды взрывается для образования рабочей площадки на глубине до 20 м, а потом выбирается. Куски руды дробятся и сортируются с помощью грохотов и классификаторов. Дробленая руда далее обогащается, а пустая порода (хвосты) выбрасывается. На этой стадии процесса экономически выгодно использовать методы промывки и грохочения, использующие разность плотностей руды и пустой породы для отделения их друг от друга. Менее плотная пустая порода уносится промывочной водой, а концентрат оседает на дно обогатительной установки. См. также РУДЫ ОБОГАЩЕНИЕ.

Процесс Байера.

Процесс получения чистой окиси алюминия включает нагревание боксита с едким натром, фильтрование, осаждение гидроокиси алюминия и ее прокаливание для выделения чистого глинозема. На практике руда смешивается с нужным количеством горячего едкого натра в автоклаве из низкоуглеродистой стали, и смесь прокачивается через ряд стальных сосудов с паровой рубашкой. В сосудах поддерживается давление пара 1,4–3,5 МПа в течение времени от 40 мин до нескольких часов, пока не завершится переход окиси алюминия из боксита в раствор алюмината натрия в перегретой жидкости. После охлаждения твердый осадок отделяется от жидкости. Жидкость фильтруется; в результате получается пересыщенный чистый раствор алюмината. Этот раствор метастабилен: алюминат-ион разлагается с образованием гидроокиси алюминия. Добавление в раствор кристаллической гидроокиси алюминия, остающейся от предыдущего цикла, ускоряет разложение. Сухие кристаллы гидроокиси алюминия затем прокаливаются для отделения воды. Получающийся безводный глинозем пригоден для использования в процессе Холла – Эру. По экономическим соображениям в промышленности эти процессы стремятся делать по возможности непрерывными.

Электролиз Холла – Эру.

Заключительная стадия производства алюминия включает его электролитическое восстановление из чистой окиси алюминия, полученной в процессе Байера. Этот способ извлечения алюминия основывается на том (открытом Холлом и Эру) факте, что когда глинозем растворяется в расплавленном криолите, при электролизе раствора выделяется алюминий. Типичный электролизер Холла – Эру представляет собой ванну с расплавленным криолитом 3NaF Ч AlF3 (Na3AlF6) – двойным фторидом натрия и алюминия, в котором растворено 3–5% глинозема, – плавающим на подушке из расплавленного алюминия. Стальные шины, проходящие через подину из углеродистых плит, используются для подачи напряжения на катод, а подвешенные угольные бруски, погруженные в расплавленный криолит, служат анодами. Рабочая температура процесса близка к 950 ° С, что значительно выше температуры плавления алюминия. Температура в электролизной ванне регулируется изменением зазора между анодами и катодным металлоприемником, на который осаждается расплавленный алюминий. Для поддержания оптимальной температуры и концентрации глинозема в современных электролизерах применяются сложные системы управления. На производство алюминия расходуется очень много электроэнергии, поэтому энергетический КПД процесса – главная проблема в алюминиевой промышленности. Электродные реакции представляют собой восстановление алюминия из его окиси и окисление углерода до его окиси и двуокиси на анодах. Одна печь дает до 2,2 т алюминия в сутки. Металл сливается раз в сутки (или реже), потом флюсуется и дегазируется в отражательной копильной печи и разливается по формам.

Возобновляемые электроды Содерберга.

В электролизере Холла – Эру угольные аноды расходуются со скоростью 2,5 см/сут, так что часто требуется установка новых анодов. Чтобы исключить частое вмешательство человека в производство, был разработан процесс с использованием возобновляемого электрода Содерберга. Анод Содерберга непрерывно образуется и спекается в восстановительной камере из пасты – смеси 70% молотого кокса и 30% смоляной связки. Эта смесь набивается в прямоугольную оболочку из листовой стали, открытую с обоих концов и расположенную вертикально над ванной с расплавом внутри печи. По мере расходования анода в верхнее отверстие оболочки добавляется паста. Когда коксосмоляная смесь опускается вниз и нагревается, она спекается в твердый углеродистый брусок прежде, чем достигает рабочей зоны.

Потребление алюминия.

Около 28% производимого алюминия идет на изготовление банок для напитков, пищевой тары и всевозможных упаковок. Еще 17% используется в транспортных средствах, включая самолеты, военную технику, железнодорожные пассажирские вагоны и автомобили. Около 16% применяется в конструкциях зданий. Примерно 8% используется в высоковольтных линиях электропередачи и других электрических устройствах, 7% – в таких потребительских товарах, как холодильники, кондиционеры воздуха, стиральные машины и мебель. На нужды машиностроения и промышленное оборудование расходуется 6%. Остающаяся часть потребляемого алюминия используется в производстве телевизионных антенн, пигментов и красок, космических кораблей и судов. См. также ХОЛЛ, ЧАРЛЗ МАРТИН.

Сандлер Р.А., Ратнер А.Х. Электрометаллургия алюминия и магния. Л., 1983

Основные свойства алюминиевой руды для применения в промышленности

Алюминий — это металл, покрытый матово-серебристой оксидной плёнкой, свойства которого определяют его популярность: мягкость, лёгкость, пластичность, высокая прочность, устойчивость к коррозии, электропроводность и отсутствие токсичности. В современных высоких технологиях применению алюминия отведено ведущее место как конструкционному, многофункциональному материалу.

  • Разновидности глинозёмсодержащих руд
  • Особенность природной горной породы боксита
  • Способы переработки алюминий содержащих ископаемых
  • Добыча и обогащение глинозёма
  • Электролитическое производство чистого алюминия
  • Дополнительная очистка алюминия рафинированием

Наибольшую ценность для промышленности в качестве источника алюминия представляет природное сырьё — алюминиевая руда, составляющая горной породы в виде бокситов, алунитов и нефелина.

Разновидности глинозёмсодержащих руд

Известно более 200 минералов, в состав которых входит алюминий.

Сырьевым источником считают только такую горную породу, которая может соответствовать следующим требованиям:

  • Природное сырьё должно иметь высокое содержание окислов алюминия;
  • Месторождение должно соответствовать экономической целесообразности его промышленной разработки.
  • Горная порода должна содержать алюминиевое сырьё в форме, подлежащей извлечению в чистом виде известными способами.

Особенность природной горной породы боксита

Сырьевым источником могут служить природные залежи бокситов, нефелинов, алунитов, глин, и каолинов. Наиболее насыщены соединениями алюминия бокситы. Глины и каолины представляют самые распространённые породы со значительным содержанием в них глинозёма. Залежи этих минералов находятся на поверхности земли.

Алюминиевая руда в природе существует только в виде бинарного соединения металла с кислородом. Добывают это соединение из природных горных руд в виде бокситов, состоящих из окислов нескольких химических элементов: алюминия, калия, натрия, магния, железа, титана, кремния, фосфора.

В зависимости от месторождения бокситы в своём составе имеют от 28 до 80% глинозёма. Это основное сырьё для получения уникального металла. Качество бокситов как сырья алюминия зависит от содержания в нём глинозёма. Этим определяются физические свойства бокситов:

  • Минерал представляет скрыто кристаллическую структуру или пребывает в аморфном состоянии. Многие минералы имеют затвердевшие формы гидрогелей простого или комплексного состава.
  • Цвет бокситов в различных точках добычи колеблется от почти белого до красных тёмных цветов. Есть месторождения с чёрной окраской минерала.
  • Плотность алюминий содержащих минералов зависит от их химического состава и составляет около 3 500 кг/м 3 .
  • Химический состав и структура бокситов определяет твёрдые свойства минерала. Самые прочные минералы отличаются твёрдостью в 6 единиц по шкале, принятой в минералогии.
  • Как природное ископаемое боксит имеет ряд примесей, чаще всего это окислы железа, кальция, магния, марганца, примеси титановых и фосфорных соединений.
Читать еще:  Присадка для сварки алюминия аргоном

Бокситы, каолины, глины в своём составе содержат примеси других соединений, которые при переработке сырья выделяются в отдельные производства.

Только в России используют месторождения с залежами пород, в составе которых глинозём составляет более низкую концентрацию.

С недавних пор глинозём стали получать из нефелинов, которые помимо глинозёма содержат окиси таких металлов, как калий, натрий, кремний и, не менее ценный, квасцовый камень, алунит.

Способы переработки алюминий содержащих ископаемых

Технология получения чистого глинозёма из алюминиевой руды не изменилась со времён открытия этого металла. Совершенствуется его производственное оборудование, позволяющее получать чистый алюминий. Основные производственные стадии получения чистого металла:

  • Добыча руды из разработанных месторождений.
  • Первичная обработка от пустых пород с целью повышения концентрации глинозёма – процесс обогащения.
  • Получение чистого глинозёма, электролитическое восстановление алюминия из его окислов.

Производственный процесс завершается получением металла с концентрацией 99,99%.

Добыча и обогащение глинозёма

Глинозём или алюминиевые окислы, в чистом виде в природе не существует. Его извлекают из алюминиевых руд, используя гидрохимические методы.

Залежи алюминиевой руды в месторождениях обычно взрывают, обеспечивая площадку для её добычи на глубине примерно 20 метров, откуда её выбирают и запускают в процесс дальнейшей обработки;

  • Используя специальное оборудование (грохоты, классификаторы), руду дробят и сортируют, отбрасывая пустую породу (хвосты). На этом этапе обогащения глинозёма пользуются способами промывки и грохочения, как наиболее выгодными экономически.
  • Осевшую на дне обогатительной установки очищенную руду смешивают с разогретой массой едкого натра в автоклаве.
  • Смесь пропускают через систему сосудов из высокопрочной стали. Сосуды оснащены паровой рубашкой, поддерживающей необходимую температуру. Давление пара поддерживается на уровне 1,5-3,5 Мпа до полного перехода алюминиевых соединений, из обогащённой породы в алюминат натрия в перегретом растворе едкого натрия.
  • После охлаждения жидкость проходит стадию фильтрации в результате которой происходит отделение твёрдого осадка и получение пересыщенного чистого раствора алюмината. При добавлении в полученный раствор остатков гидроокиси алюминия от предыдущего цикла, разложение ускоряется.
  • Для окончательной осушки гидрата окиси алюминия применяют процедуру прокаливания.

Электролитическое производство чистого алюминия

Чистый алюминий получают, используя непрерывный процесс в результате которого прокалённый алюминий вступает в стадию электролитического восстановления.

Современные электролизёры представляют устройство, состоящее следующих частей:

  • Из стального кожуха, футерованного угольными блоками и плитами. В процессе работы на поверхности корпуса ванны образуется плотная плёнка из застывшего электролита, предохраняющая футеровку от разрушения расплавом электролита.
  • Слой расплавленного алюминия на дне ванны, толщиной 10–20 см, служит катодом в этой установке.
  • Ток в алюминиевый расплав подводится через угольные блоки и встроенные стальные стержни.
  • Аноды, подвешенные на железную раму с помощью стальных штырей, обеспечены тягами, соединёнными с подъёмным механизмом. По мере сгорания анод опускается вниз, а стержни применяют в качестве элемента для подвода тока.
  • В цехах электролизёры устанавливают последовательно в несколько рядов (два или четыре ряда).

Дополнительная очистка алюминия рафинированием

Если алюминий, извлечённый из электролизёров, не соответствует конечным требованиям, его подвергают дополнительной очистке рафинированием.

В промышленности этот процесс проводят в особенном электролизёре, в котором содержится три жидких слоя:

  • Нижний – рафинируемый алюминий с добавкой примерно 35% меди, служит анодом. Медь присутствует для утяжеления алюминиевого слоя, в анодном сплаве медь не растворяется, его плотность должна превышать 3000 кг/м 3 .
  • Средний слой представляет смесь фторидов и хлоридов бария, кальция, алюминия с температурой плавления около 730 о С.
  • Верхний слой – чистый рафинированный алюминиевый расплав, который растворяется в анодном слое и поднимается вверх. Он служит в этой схеме катодом. Подвод тока осуществляется графитовым электродом.

В процессе электролиза примеси остаются в анодном слое и электролите. Выход чистого алюминия составляет 95–98%. Разработке алюминий содержащих месторождений, отведено ведущее место в народном хозяйстве, благодаря свойствам алюминия, который в настоящее время занимает второе место после железа в современной промышленности.

Алюминиевая руда: серебристый, но не серебро

Алюминий является одним из самых популярных и востребованных металлов. В какой только отрасли его не добавляют к составу тех или иных предметов. Начиная от приборостроения и заканчивая авиацией. Свойства этого легкого, гибкого и неподатливого для коррозии металла пришлись по вкусу весьма многим отраслям производства.

Сам алюминий (довольно активный металл) в чистом виде в природе практически не встречается и его добывают из глинозема, химическая формула которого – Al2O3. А вот прямым путем к получению глинозема является, в свою очередь, алюминиевая руда.

Различия по насыщенности

В основе своей достойными упоминания являются лишь три вида руд, с которыми нужно работать, если вы занимаетесь добычей алюминия. Да, данный химический элемент очень и очень распространен, и его можно найти также в других соединениях (их насчитывают около двух с половиной сотен). Однако, наиболее рентабельной, в силу весьма высокой концентрации, добыча будет именно из бокситов, алунитов и нефелинов.

Нефелины являются щелочным образованием, появившимся вследствие высокой температуры магмы. Из одной единицы данной руды выйдет до 25% глинозема, как основного сырья. Однако, эта руда алюминия считается наиболее бедной для добытчиков. Все соединения, содержащие в себе глинозем в еще меньших количествах, чем имеют нефелины – заведомо признаны нерентабельными.

Алуниты образовались при вулканической, а также гидротермальной активностях. Они в себе содержат до 40% такого необходимого глинозема, являясь «золотой серединой» в нашей троице руд.

И первое место, с рекордным содержанием оксида алюминия в виде пятидесяти процентов и более, получают бокситы! Они по праву считаются основным источником глинозема. Однако, касаемо их происхождения ученые до сих пор не могут прийти к единственно верному решению.

То ли они перекочевали с изначального места происхождения и отложились после того, как выветрились древние породы, то ли получились осадком после того, как растворились некоторые известняки, или же вообще стали итогом распада солей железа, алюминия и титана, выпав осадком. В общем, происхождение все еще неизвестно. Но то, что бокситы – самые доходные, это уже точно.

Способы добывания алюминия

Добывают необходимые руды двумя способами.

В плане открытого способа добычи в месторождениях алюминия заветного Al2O3, три основных руды делятся на две группы.

Бокситы и нефелины, как структуры с более высокой плотностью, срезаются фрезерным методом с помощью карьерного комбайна. Конечно, все зависит от производителя и модели машины, но, в среднем, она способна снимать до 60 сантиметров породы за раз. После полного прохода одного слоя делается так называемая полка. Такой метод способствует безопасному нахождению на своем месте оператора комбайна. В случае обвала и ходовая часть, и кабина с оператором будут находиться в безопасности.

Во второй группе находятся алуниты, которые, в силу рыхлости, добывают карьерные экскаваторы с последующей выгрузкой на самосвалы.

Радикально другим способом является пробивание шахты. Здесь принцип добычи идет таким же, как и в угольном промысле. Кстати, самой глубокой шахтой алюминия в России является та, что расположена на Урале. Глубина шахты составляет 1550м.!

Обработка полученной руды

Далее, вне зависимости от выбранного способа добычи, полученные полезные ископаемые отправляются в цеха для переработки, где специальные дробильные аппараты разобьют минералы на фракции, размером примерно под 110 миллиметров.

Следующим этапом идет получение дополнительных хим. добавок и транспортировка к дальнейшему этапу, которым является спекание породы в печах.

Пройдя декомпозицию и получив на выходе из нее алюминатную пульпу, мы отправим пульпу на разделение и осушение ее от жидкости.

На финальном этапе то, что получилось, подвергается очистке от щелочей и снова отправляется в печи. В этот раз – на прокалку. Финалом всех действий станет тот самый сухой глинозем, который нужен для получения алюминия через гидролиз.

Пусть пробивание шахты и считается более тяжелым способом, но оно несет меньший вред окружающей среде, чем открытый способ. Если вы за экологию – вы знаете, что выбрать.

Добыча алюминия в мире

В данном пункте можно сказать, что показатели по взаимодействиям с алюминием во всем мире разделяются на два списка. В первом списке окажутся страны, которые владеют наибольшими природными запасами алюминия, но, возможно, не все из этих богатств успевают обрабатывать. А во втором списке как раз находятся мировые лидеры по непосредственной добыче алюминиевой руды.

Итак, в плане природных (хоть и не везде, пока что, реализованных) богатств ситуация обстоит так:

  1. Гвинея
  2. Бразилия
  3. Ямайка
  4. Австралия
  5. Индия

Эти страны, можно сказать, обладают подавляющим большинством Al2O3 в мире. На их долю приходится 73 процента в сумме. Остальные запасы разбросаны по всему земному шару не в таких щедрых количествах. Гвинея, что расположена в Африке, в глобальном смысле – крупнейшее месторождение алюминиевых руд в мире. Она «отхватила» 28%, что даже больше четверти от общемировых залежей данного полезного ископаемого.

А вот так обстоят дела с процессами добычи алюминиевой руды:

  1. Китай – на первом месте и добывает 86,5 млн. тонн;
  2. Австралия – страна диковинных животных со своими 81,7млн. тонн на втором месте;
  3. Бразилия – 30,7 млн. тонн;
  4. Гвинея, будучи лидером по запасам, в плане добычи лишь на четвертом месте – 19,7 млн. тонн;
  5. Индия – 14,9 млн. тонн.

Также к данному списку можно добавить Ямайку, способную добыть 9,7 млн. тонн и Россию, с ее показателем в 6,6 млн. тонн.

Алюминий в России

Касаемо добычи алюминия в России, похвастаться определенными показателями могут лишь Ленинградская область и, конечно же, Урал, как истинная кладовая полезных ископаемых. Основной способ добычи – шахтный. Им добывают четыре пятых всей руды страны. В общей сложности, на территории Федерации имеется более четырех десятков месторождений нефелинов и бокситов, ресурса которых точно хватит даже нашим праправнукам.

Однако, Россия также занимается и ввозом глинозема из других стран. Все потому, что местные вещества (к примеру, месторождение Красная Шапочка в Свердловской области) содержат в себе лишь половину глинозема. Тогда как китайские или итальянские породы насыщенны Al2O на шестьдесят и более процентов.

Оглядываясь на некоторые сложности с добычей алюминия в России, имеет смысл задуматься о производстве вторичного алюминия, как это сделали Великобритания, Германия, США, Франция и Япония.

Применение алюминия

Как мы уже оговаривали в начале статьи, спектр применения алюминия и его соединений крайне широк. Даже на этапах извлечения из породы он крайне полезен. В самой руде, например, находятся в малом количестве и другие металлы, вроде ванадия, титана и хрома, полезные для процессов легировании стали. На этапе глинозема тоже есть польза, ведь глинозем используется в черной металлургии в роли флюса.

Сам металл используют в производстве теплового оборудования, криогенной технике, участвует в создании ряда сплавов в металлургии, присутствует в стекольной промышленности, ракетной технике, авиации и даже в пищевой промышленности, как добавка Е173.

Так что, наверняка ясно только одно. В течение еще многих лет потребность человечества в алюминии, как и в его соединениях, не угаснет. Что, соответственно, говорит исключительно о росте объемов его добычи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector