E-polirovka.ru

Профессиональный аппарат низкочастотной кавитации Ultra BF-36 купить по хорошей цене.. УЗ улучшает проникновение активных веществ, содержащихся в проводящей среде с поверхности кожи в глубину тканей, значительно увеличивает проницаемость кожи по сравнению с простой аппликацией. Основное отличие от высокочастотного ультразвука: Специалисту постоянно нужно работать насадкой, во избежании внутреннего ожога, Ultra BF 36 – это процедура свободных рук, специалисту нужно лишь нанести гель, поставить на тело пластины и включить аппарат. Низкочастотный УЗ более глубоко...
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анодное оксидирование алюминия и его сплавов

Анодное оксидирование алюминия и его сплавов

Определяющими реакциями при анодном оксидировании алюминия и его сплавов в серной кислоте являются электрохимическое формирование оксида в барьерном слое и химическое растворение оксида при воздействии электролита.

Формирование барьерного слоя наблюдается до сравнительно небольших толщин, после чего рост пленки практически прекращается. На практике невыгодно достигать предельных ее толщин, так как при этом скорость роста пленки замедляется, ухудшаются ее механические свойства, возрастают потери тока. Рост плотности тока возможен лишь в ограниченных пределах, выше которых отмечается перегрев анода и, как следствие, снижение толщины пленки. Наиболее действенным фактором для повышения предельных толщин является снижение температуры процесса, так как анодирование сопровождается значительным выделением тепла. Вблизи барьерного слоя температура поднимается выше 120 °С, а концентрация H2SO4 становится более 50%.

Для получения толстых пленок анодирование проводят при охлаждении электролита (0-5 °С) и иногда деталей. Перемешивание электролита несколько улучшает условия электролиза, но не решает проблему получения пленок повышенной толщины. Концентрация серной кислоты влияет в меньшей степени на растворимость оксида алюминия по сравнению с температурой. Для анодного оксидирования алюминия и его сплавов наиболее распространены растворы серной кислоты. Электролиты выбирают в зависимости от назначения покрытий. Серную кислоту используют для получения пленок, предназначенных для последующей окраски в органических красителях.

Электролит, состоящий из хромового технического ангидрида и серной кислоты и электролит из щавелевой кислоты и двухводной сульфосалициловой кислоты применяют для нанесения оксидных пленок на детали для сборки в узлах различных машин и изделий. В электролитах, состоящем из щавелевой и борной кислоты, и на основе ортофосфорной кислоты получают износостойкие оксидные пленки с повышенной твердостью. В электролите состоящего из хромового ангидрида, щавелевой и борной кислоты и электролите состоящего из хромового ангидрида, лимонной кислоты и щавелевокислого калия-титана оксидируют алюминиевые сплавы с различным содержанием меди.

В растворе ортофосфорной кислоты оксидируют литейные сплавы алюминия перед нанесением металлических покрытий. Широко применяют растворы для получения пленок, обладающих электроизоляционными свойствами. Наиболее распространенными среди них являются электролиты на основе борной кислоты, содержащей борной кислоты 90-150 г/л, буры до 2,5 г/л; рН электролита 5,5. Режим электролиза: напряжение оксидирования 230-250 В; температура электролита 70-95 °С; время оксидирования 25-35 мин; толщина оксидной пленки 0,2-0,3 мкм.

Для формирования антикоррозионных пленок используют хромовокислые и сернокислые растворы при наложении постоянного или переменного тока. Применение переменного тока в сернокислом электролите позволяет существенно увеличить производительность электролитов. Анодирование производится в растворе 12-16%-ной H2SO4 при температуре 12-20 °С, плотности тока на аноде Da = 3 ? 4,5 А/дм2, напряжении 18-28 В. Оксидные пленки, полученные при использовании переменного тока на деталях из алюминиевых сплавов и содержащих медь, имеют зеленоватый оттенок из-за осаждения меди.

Для получения покрытий с повышенной износостойкостью применяют способ по которому скорость оксидирования выше в 4-10 раз по сравнению со стандартным режимом. Состав электролита — 16%-ный раствор H2SO4, температура процесса 12-18 °С, начальная плотность тока 7-10 А/дм2. Для отвода теплоты электролит интенсивно перемешивается сжатым воздухом. Напряжение на электролите 22-30 В. После задания электрических параметров электролиза процесс протекает без регулирования режима с падающей мощностью. Этим способом получают качественные пленки толщиной до 50 мкм на деформируемых и литейных алюминиевых сплавах.

Анодные оксидные пленки, обладающие повышенной твердостью, формируются в электролитах на основе серной и щавелевой кислот. Для получения твердых пленок большой толщины интенсивно охлаждают электролит и оксидируемые детали. Ускорение твердого анодирования достигается наложением переменного тока на постоянный. Успешно используют электролиты, содержащие серную и щавелевую кислоты. Так, в растворе, содержащем 12% H2SO4 и 1% (СООН)2, получают на литейных сплавах алюминия, содержащих 3% Сu и 7% Si, твердый оксид при Da = 4 А/дм2, напряжении 10-60 В, температуре 10 °С со скоростью наращивания 5 мкм/мин. Благодаря применению переменного тока сохраняется качество предварительной подготовки перед оксидированием. Предварительная подготовка алюминия и его сплавов перед анодированием состоит в обработке резанием, химическом или электрохимическом полировании деталей.

Декоративными и антикоррозионными свойствами обладают пленки, полученные эматалированием. Для этого применяют электролиты на основе кислот, растворяющих оксид, с добавками солей титана и циркония, а также полиспиртов в качестве пластификаторов. Эматалевые пленки получают в электролитах, содержащих % (маc. доля): двойной щавелевокислой соли калия и титана 5; лимонной кислоты 1,5; ортофосфорной кислоты 0,6; глюкозы 2. Режим: Da = 5 А/дм2, напряжение 110 В, температура 25 °С, ток переменный. Свойства анодных оксидных пленок определяются их пористостью, твердостью, износостойкостью, тепловыми, а также электроизоляционными и коррозионными характеристиками.

Пористость оксидных пленок определяется объемом пустот, имеющихся в пленке, отнесенным к объему всей пленки. Общая пористость включает микропористость, обусловленную механизмом формирования пленки, и макропористость — трещины и механические разрушения. Она зависит от природы сплава, режима электролиза и состава электролита и колеблется для различных сплавов от 10 до 40%. Так, для толстых оксидных пленок, полученных на сплавах алюминия, содержащих медь, в серной кислоте, пористость чистого алюминия составляет 10%, сплава Д16 — 26%, бинарного сплава — 32%. Присутствие в сплаве Si, Mn и Mg незначительно сказывается на пористости, оставляя ее в пределах 10-15%.

Твердость оксидных пленок зависит от концентрации электролита, температуры и плотности тока. С повышением концентрации и температуры электролита она снижается. Использование переменного тока и снижение его плотности уменьшает твердость анодного оксида. Оценка твердости для пленок толщиной более 5 мкм осуществляется методом измерения микротвердости. Для тонких пленок с меньшей точностью применяют метод царапания стекломером. Микротвердость анодных оксидных пленок меняется от 1,5?104 МПа на чистом алюминии до (2,5 ? 3,0) 103 МПа на технических сплавах.

Износостойкость оксидных пленок (способность оказывать сопротивление истиранию) зависит от свойств пленок и условий их изнашивания — трение скольжения или воздействие твердых частиц. Полирование оксидированной поверхности снижает износ и коэффициент трения пленок. Маслоемкость оксида существенно уменьшает износ и в некоторых случаях доводит его до нуля. Теплоизоляционные свойства оксидированных алюминиевых сплавов выше по сравнению с неоксидированным металлом. Так, теплопроводность оксида алюминия равна 0,004-0,012 Дж/(см·с·°С), что в 200-500 раз ниже, чем у чистого алюминия. Коэффициент теплового излучения анодированной поверхности в 10 раз выше по сравнению с чистым металлом. Толстые пленки на алюминиевых сплавах обладают повышенной стойкостью против воздействия высоких температур. Поэтому оксидирование используют при изготовлении изложниц для разливки алюминиевых и магниевых сплавов. При длительном многократном воздействии высоких температур на оксидированной поверхности образуются микротрещины, обусловленные различием в значениях коэффициента линейного расширения анодной пленки (8 · 10 -6 ?С-1) и алюминия (22,9 · 10 -6 ?С-1).

Электроизоляционные свойства оксидных пленок на алюминии обусловлены высоким удельным электрическим сопротивлением оксида алюминия. Эта величина при 20 °С составляет, Ом-см: 5 · 10 12 для стекла; 3 · 10 14 для фарфора; 2 · 10 15 для эбонита; 9 · 10 15 для слюды; 4 · 10 15 для анодной оксидной пленки (толщина 5 мкм) на алюминии. Электрическое сопротивление пленки зависит от состава алюминиевого сплава, режима оксидирования, последующей обработки оксидных пленок, наполнения, условий эксплуатации. Для анодных оксидных пленок характерны высокие адгезия, жаростойкость, теплопроводность, механическая прочность и химическая стойкость.

Коррозионные свойства оксидных пленок определяются их стойкостью к химическому воздействию окружающей среды без нарушения сплошности пленок. Коррозионная стойкость оксидированных алюминиевых изделий резко уменьшается в щелочных средах и средах с присутствием галогенсодержащих ионов. В растворах, содержащих ионы металлов, контактно выделяющихся на алюминии (медь, серебро, ртуть), коррозионная стойкость оксидированных алюминиевых изделий снижается. Увеличение пористости и растрескивание также снижают коррозионную стойкость оксидированных алюминиевых изделий в результате ухудшения изолированности металла от коррозионной среды. С ростом толщины пленок и снижением шероховатости их коррозионная стойкость возрастает, а после достижения определенной толщины пленки — замедляется из-за увеличения пористости.

Анодирование алюминия. Технология и реактивы анодирования

В статье приведены основные принципы процесса анодирования алюминия, теоретические основы процесса. Рассмотрены основные растворы, использующиеся для анодного оксидирования, приведены характеристики анодной пленки в зависимости от используемых реактивов и параметров технологического процесса. Рассмотрены составы для получения цветных анодных пленок.

Содержание:

Принципы процесса анодирования

Процесс электрохимического оксидирования алюминия и его сплавов в растворах серной, хромовой, щавелевой кислот и их смесей получил название анодирование алюминия. Несмотря на кажущуюся простоту процесс анодирования имеет множество вариантов, которые оказывают непосредственное влияние на характеристики и качество оксидной пленки. На внешний вид и структуру покрытия влияет и состав алюминиевого сплава, а корректировка электролита позволяет в широких пределах менять свойства покрытия. Качество и наличие примесей в составе электролита также может иметь решающее значение.

Анодирование значительно отличается от процессов нанесения гальванического покрытия на металлы (электрохимического осаждения) при которых защитный или декоративный слой металла наносится на поверхность металлического изделия, так как является процессом преобразования основного металла, в результате которого меняется внешний вид и характеристики поверхности.

Применение анодирования

Применение анодирования — это тема отдельной статьи, в любой отрасли где в той или иной мере используются изделия из алюминия или его сплавов и требуется изменение каких-либо качеств металла анодирование является оптимальным и зачатую единственным решением.

Приведем перечень основных областей применения анодирования:

  1. Тонкие окисные пленки используются в качестве основы для нанесения органических и неорганических покрытий (краски или лака).
  2. Цветное анодирование. Применение различных окрашивающих электролитов позволяет получить широкую гамму оттенков и цветов поверхности алюминиевого изделия. В качестве добавок используются соли никеля, кобальта или олова. Получаемые оттенки от светло-бронзового до черного.
  3. Повышение износостойкости. Оксидные покрытия на алюминии значительно тверже основного металла. Твердое анодирование широко применяется для деталей, работающих на истирание при небольшой нагрузке, а также для повышения коррозионной стойкости изделий.
  4. Электрическая изоляция. Оксидная пленка по сравнению с органическими изоляционными материалами обладает не только высокими изоляционными свойствами, но и обладает значительно большей теплостойкостью.
  5. Получение уплотненной поверхности с высокими антифрикционными свойствами. (смазочное покрытие).

Выбор электролита анодирования

Как указывалось выше, на свойства оксидной пленки, полученной методом анодирования оказывает влияние множество факторов – тип алюминиевого сплава, способ предварительной обработки поверхности детали , режим анодирования и тип финишных операций. Определяющее значение имеет и состав электролита. В основном используются кислотные электролиты (щелочные могут быть применены в отдельных случаях при специальных видах анодирования). Основной кислотой является серная, на ее основе готовится подавляющее большинство электролитов анодирования. Для получения специальных видов покрытий используются другие кислоты.

Анодирование в сернокислом электролите

Анодирование в серной кислоте позволяет получить полупрозрачные, бесцветные покрытия толщиной около 35 мк. Если процессу анодирования предшествует процесс глянцевания поверхности деталей, покрытия получают высокие декоративные качества (блестящее анодирование). В серной кислоте получают также пластичные анодные пленки, которые не разрушаются при формовке изделий.

Концентрация серной кислоты и температура электролита

Концентрация серной кислоты для анодирования в промышленных условиях принимается в диапазоне 8-35% (по массе). В концентрированном растворе анодная пленка получается мягкой и пористой, эластичность пленки высокая. Классической является концентрация 15% (по массе). Температуру в процессе анодирования задают в пределах от 18 0 С до 25 0 С. В большинстве случаев принимается температура в 20 0 С. С применением серной кислоты получают также твердые анодные пленки, в этом случае процесс анодирования проводится при низких значениях температур (от -5 до +5 0 С).

Читать еще:  Ящик для инструментов из алюминия своими руками

Контроль температуры в процессе анодирования является обязательным, от температуры зависит плотность тока и скорость растворения пленки, что в свою очередь оказывает прямое влияние на качество и характеристики покрытия. Для того, чтобы избежать локального перегрева раствора электролита используют специальные перемешивающие устройства.

Напряжение и плотность тока

При анодировании в серной кислоте используется стандартный выпрямитель с выходным напряжением до 24 вольта. При стандартном режиме сила тока составляет 16 вольт при плотности тока 1,5 а/дм 2 . Для получения коррозионностойких пленок большой толщины напряжение силу тока поднимают до 18 вольт, а при обработке сплавов алюминия с кремнием до 22 вольт. В отдельных случаях, например, при анодировании рулонного материала или проволоки используется переменный ток. Использование пониженной плотности тока позволяет получать тонкие, прозрачные окисные пленки, превосходящие по прозрачности пленки аналогичной толщины, полученные при стандартных значениях плотности тока.

Длительность процесса

Продолжительность процесса анодирования зависит от требуемых значений толщины пленки, а также используемой плотности тока. Для чистого алюминия это соотношение можно предложить в виде:

Толщина пленки, мк. = (Плотность тока, а/дм 2 Х Время, мин.)/3

Соотношение является приблизительным, т. к. на продолжительность процесса может зависеть от типа сплава и режима обработки.

Рабочий процесс

Технологический процесс анодирования отличается от процессов нанесения гальванических покрытий прежде всего тем, что рассеивающая способность электролитов анодирования значительно выше, чем у электролитов, использующихся при процессах хромирования, меднения, цинкования или никелирования металла. Эффективная рассеивающая способность при активном перемешивании позволяет получать равномерные по толщине пленки на всей поверхности изделий, включая внутренние поверхности отверстий и пазов.

В остальном технологический процесс анодирования аналогичен процессам электрохимического нанесения покрытий – изделия погружают в предварительно нагретый электролит на подвесах или зажимах, детали не соприкасаются друг с другом, расстояние до катода должно быть не менее 15 см. (для габаритных изделий значения выше). Затем включается перемешивание раствора и подается ток. В обычных условиях площадь катода должна быть равна площади анода, сечение катода должно быть достаточным для обеспечения требуемой плотности тока.

По окончании процесса прекращают подачу тока и незамедлительно извлекают изделия из гальванической ванны. Изделия промывают в проточной воде и сушат.

Анодирование в хромовой кислоте

Хромовая кислота используется, если требуется провести анодирование ответственных алюминиевых деталей и узлов с тонкими стенками или с высокой точностью обработки. Растворение алюминия в хромовой кислоте ниже, чем в серной, снижение усталостной прочности металла ниже – пленка получается тонкой, непрозрачного серого цвета. Максимальная толщина окисной пленки достигает 10 мк., стандартная толщина от 2,5 до 5 мк.

Концентрация хромового ангидрида CrO3 принимается в пределах от 2 до 15% (по массе). Температуру режима в большинстве случаев задают в пределах 25-40 0 С, активное перемешивание раствора электролита не требуется. При анодировании в 10% растворе хромовой кислоты температуру процесса поднимают до 54 0 С при напряжении 30 вольт для обеспечения плотности тока равной 1,2 а/дм 2 . Для сплавов, содержащих в своем составе медь или цинк напряжение задается в пределах 15-20 вольт при той же плотности тока. При анодировании в электролите низкой концентрации 3-5% (по массе) применяется специальный режим подачи напряжения и процесс проходит циклами. Данный режим используется для обнаружения дефектов поверхности изделия или при формировании подслоя под покраску.

Анодирование в щавелевой кислоте

В растворе щавелевой кислоты получают пленки желтого оттенка, обладающие высокой износостойкостью. Этот метод один из первых открытых способов получения цветного покрытия. Износостойкость покрытия при истирании в два раза выше, чем при анодировании в серной кислоте. В процессе анодирования в щавелевой кислоте наряду с постоянным током с напряжением 30-60 вольт, используют режимы с переменным током. Для получения равномерного желтого или бронзового оттенка раствор интенсивно перемешивают. В остальном данный процесс не отличается от анодирования в серной кислоте. В качестве катодов могут быть использованы различные металлы – железо, свинец, нержавеющая сталь.

Другие растворы анодирования

В некоторых случаях используются электролиты, в которых оксидная пленка алюминия не растворяется – так называемые электролиты барьерного типа. С использованием растворов анодирования содержащих борную кислоту, виннокислый аммоний, борат аммония получают покрытия на деталях, использующихся в электроприборах (электролитических конденсаторах). Например, при обработке в растворе с боратом аммония получают пленки, имеющие пробивное напряжение 550 вольт. Также, данные виды электролитов используются при анодировании алюминия, осажденного в вакууме.

Алюминиевые детали, обработка которых подразумевает нанесение гальванического покрытия после анодирования обрабатывают в растворе, содержащем 25-30% фосфорной кислоты. Получаемые пленки имеют толщину до 6 мк., что связано с высокой растворимостью алюминия в фосфорной кислоте. Процесс проводят при цеховой температуре, плотности тока 10-20 а/мм 2 и напряжении 30-60 вольт в течение 10-15 минут.

Твердые пленки золотистого, коричневого или черного цветов получают при использовании раствора, содержащего 40-100 г/л сульфосалициловой кислоты и 30-60 г/л серной кислоты при температуре 30 0 С, плотности тока 2,5-3,5 а/дм 2 и напряжении до 80 вольт.

Снятие анодных покрытий

Удалить некачественное анодное покрытие можно только со всей поверхности изделия, частичное восстановление пленки в большинстве случаев невозможно. Покрытие, как правило снимают в растворах, содержащих едкие щелочи. Процесс проходит под строгим контролем основных режимов, т. к. такие растворы обладают высокой степенью воздействия на основной металл. Классическим и менее всего воздействующим на поверхность алюминия признают раствор, содержащий 35 мл/л фосфорной кислоты и 20 г/мл хромовой кислоты. Обработка проходит в течение 1-10 мин, в зависимости от толщины пленки при температуре 95-100 0 С. для снятия твердых анодных покрытий используют указанный раствор с повышенной два раза концентрацией, при этом поверхность алюминиевых сплавов, содержащих медь может окрашиваться в серый или черный цвет.

Повторная обработка изделий после удаления анодной пленки возможна после оценки состояния поверхности изделия, если чистота поверхности достаточна для нанесения покрытия и полирование не требуется, можно приступать к процессу незамедлительно.

Следует отметить, что при обработке деталей для которых необходимо точное соблюдение первоначальных размеров потребуется повторное анодирование с нанесением пленки большей толщины, чем была первоначально. Это связано с тем, что при снятии и повторном нанесении покрытия потери могут составлять от половина до двух третей первоначальной толщины пленки.

Анодирование алюминия в домашних условиях

Сущностью процесса анодирования является наращивание оксидного покрытия, которое на алюминии и его сплавах выполняет защитную функцию от воздействий среды. Другое название – анодное оксидирование. Кроме того, оксидирование применяют для повышения эстетичности внешнего вида изделий.

Устраняются поверхностные дефекты– небольшие царапины, мелкие сколы. Можно имитировать покрытие драгоценными металлами или повысить адгезивные свойства. Покрытие можно наносить не только на производстве, но и дома.

Анодирование алюминия в домашних условиях пользуется большой популярностью у домашних умельцев. В изделиях, подвергнутых анодному оксидированию, повышается стойкость защитного покрытия.

Общие сведения о технологии анодирования

Технология анодирования алюминия схожа с гальванической обработкой. Оседание ионов оксидов раствора на заготовке происходит в жидком электролите при высоких или низких температурах. Использование нагретого раствора возможно в промышленных установках, где есть возможность тщательного контроля и регулирования напряжения и силы тока в автоматическом режиме.

В домашних условиях обычно пользуются холодным методом. Данный способ достаточно прост, не требует постоянного контроля, а оборудование и расходные материалы — доступны. Для приготовления раствора можно использовать электролит, применяемый в свинцовых автомобильных аккумуляторах. Он продается в каждом автомагазине.

Высокая прочность защитной оксидной пленки зависит от ее толщины, которая в домашних условиях получается при обработке в холодном растворе. Наращивание производится ступенчатым регулированием рабочего тока.

Оксидирование алюминия в черный цвет относится к цветному анодированию. Черный цвет получают в два этапа. Вначале наносится бесцветная пленка электролитическим способом, а затем заготовку помещают солевой раствор кислот. В зависимости от кислоты цвет может быть от бледной латуни до насыщенного черного. Черный алюминий широко используется в строительстве и отделке.

Подготовительный процесс

Для получения гладкой поверхности на стадии подготовки необходимо заготовку отполировать. С помощью войлочного или другого полировального круга устраняются царапины, затягиваются большие поры. Отсутствие микронеровностей снижает вероятность появления прогаров. Анодная пленка не способна скрыть внешние дефекты.

Перед анодированием алюминия необходимо определиться с размерами обрабатываемых деталей. Получаемый слой имеет толщину 50 микрон, поэтому на обработанную резьбу невозможно будет накрутить гайку. Если же детали соединяются с помощью посадки, то не стоит забывать, что после анодирования детали шлифовке не подлежат.

Проведение анодирования в домашних условиях

Для проведения процесса необходимы емкости. Емкости для анодирования должны соответствовать размерам деталей, быть чуть больше. В связи с чем обычно пользуются несколькими ваннами. Материал емкостей – алюминий. Но если изделия небольшого размера, то подойдут пластиковые контейнеры. Только на дно и вдоль стенок необходимо уложить алюминиевые листы. Это необходимо, чтобы создать ток равномерной плотности по всему объему.

Электролит нуждается в изоляции от внешнего воздействия тепла. При нагревании его придется менять. Для исключения нагрева емкости снаружи покрываются слоем теплоизоляции. Ее можно обклеить пенопластом до 50 мм толщиной или, поместив в короб, заполнить свободное пространство монтажной пеной.

Раствор серной кислоты получают путем разбавления электролита для автомобильных аккумуляторов дистиллированной водой в пропорциях один к одному. Купив канистру емкостью 5 литров, раствора можно получить 10 литров.

Смешивание, когда в кислоту добавляется вода, сопровождается обильным тепловыделением, и она буквально вскипает разбрызгиваясь. Поэтому в целях безопасности серную кислоту вливают в емкость с водой.

Перед началом анодирования алюминия его подвергают химической подготовке. Химическая подготовка – процесс обезжиривания. В промышленных условиях обработку проводят едким натром или калием. Но в домашних условиях лучше пользоваться хозяйственным мылом. Зубной щеткой и мыльным раствором с поверхности хорошо удаляются загрязнения. После чего сначала заготовки промываются теплой водой, а затем — холодной.

Альтернативой хозяйственному мылу служит стиральный порошок. Растворив его в закрытом пластиковом контейнере и поместив туда обрабатываемые детали, необходимо интенсивно встряхнуть. Затем детали промываются и просушиваются потоком горячего воздуха. Активный кислород, содержащийся в стиральном порошке, защищает обезжиренные изделия, даже если их взять голыми руками.

Подготовка электролита

Растворы кислот считаются небезопасными реактивами, поэтому для проведения анодирования алюминия в домашних условиях прибегают к другому типу раствора. Для его приготовления используют соль и соду, которые всегда есть под рукой.

Для приготовления электролита берут две пластмассовые емкости. В них наводят солевой и содовый составы, соблюдая пропорцию: на порцию соли или соды 9 порций дистиллированной воды.

Анодирование в домашних условиях

После растворения компонентов раствор выдерживается с целью оседания не растворившихся частиц на дно. При переливании в емкость для анодирования его необходимо процедить.

Способы анодирования алюминия

Разработано несколько способов обработки алюминиевых сплавов, но широкое применение нашел химический способ в среде электролита. Для получения раствора используют кислоты:

  • серную;
  • хромовую;
  • щавелевую;
  • сульфосалициловую.

Для придания дополнительных свойств в раствор добавляют соли или органические кислоты. В домашних условиях в основном используют серную кислоту, но при обработке деталей сложной конфигурации предпочтительнее использовать хромовую кислоту.

Процесс происходит при температурах от 0°С до 50°С. При низких температурах на поверхности алюминия образуется твердое покрытие. При повышении температуры процесс протекает значительно быстрее, но покрытие обладает высокой мягкостью и пористостью.

Технология твердого анодирования алюминия

Читать еще:  Лист алюминиевый ГОСТ 13726 97

Кроме химического метода в некоторых случаях используются следующие методы анодирования алюминия:

  • микродуговое;
  • цветное:
    1. адсорбцией;
    2. опусканием в электролит;
    3. опусканием в красящий раствор;
    4. гальваникой;
  • интерферентное;
  • интегральное.

Теплое анодирование

Способ теплого анодирования используется для получения основы под покраску. Покрытие пористое, но за счет этого обладает высокой адгезией. Нанесенная сверху эпоксидная краска надежно защитит алюминий от внешних воздействий.

Недостатком считается низкая механическая прочность и коррозионная стойкость покрытия. Оно разрушается при контакте с морской водой и активными металлами. Данный способ можно произвести в домашних условиях.

Процесс протекает при комнатной температуре или выше (не более 50°С). После обезжиривания заготовки устанавливаются на подвесе, который удерживает их в растворе электролита.

Анодирование продолжается до тех пор, пока на поверхности не появится покрытие молочного цвета. После снятия напряжения заготовки промываются в холодной воде. Затем детали подлежат окрашиванию. Красят их путем помещения в емкость с горячим красителем. После чего полученный результат закрепляют на протяжении 1 часа.

Методы цветного анодировния алюминия

Холодная технология

Для проведения анодирования алюминия необходимы:

  • источник питания 12 В (АКБ, стабилизатор);
  • алюминиевые провода;
  • реостат;
  • амперметр;
  • емкости для растворов.

Холодная технология отличается тем, что рост анодированного покрытия со стороны металла протекает с большей скоростью, чем его растворение с внешней стороны.

Вначале проводятся подготовительные работы, описанные выше. Затем детали необходимо закрепить. Не следует забывать, что под крепежным элементом пленка не образуется. А подвешенные заготовки при опускании в емкость не должны касаться стенок и дна.

К деталям от источника питания подключается анод, соответственно к емкости катод. Плотность тока подбирается в пределах 1,6-4 А/дм2. Рекомендуемые значения 2-2,2 А/дм2. При малых значениях процесс будет протекать медленнее, а при больших может возникнуть пробой цепи и покрытие начнет разрушаться.

Не рекомендуется, чтобы температура электролита поднималась выше 5°С. При анодировании электролит нагревается не равномерно. В центре он теплее, чем в углах емкости, поэтому необходимо постоянное перемешивание.

Продолжительность анодирования при холодном способе составляет около получаса для небольших элементов. Для крупных деталей продолжительность может составлять 60-90 минут. На окончание процесса указывает измененный цвет на поверхности алюминиевого изделия. После отсоединения проводов деталь промывается.

Закрепление результата

Качество анодирования алюминия зависит от завершающего этапа – закрепления покрытия. Для этого после нанесения покрытия и промывки детали помещают на четверть часа в раствор марганца. После выемки необходимо детали промыть под горячей и холодной водой для удаления из пор остатков раствора.

Перед окрашиванием необходимо закупорить микроскопические поры на пленке. Для чего изделия кипятят в дистиллированной воде в течение 30-40 минут.

Процесс анодирования алюминия

Анодирование алюминия или его анодное окислениерассматривается многими предпринимателями, как одно из самых перспективных направлений обработки алюминия и его сплавов.

Сущность анодирования алюминия

Почему? Что такого особенного в этом незамысловатом с точки зрения химии процессе? А главное в чем его экономическая выгода? Давайте разбираться.

Как известно, алюминий самый распространенный металл на Земле, а кроме того еще и самый востребованный. Химические и физические свойства алюминия позволяют использовать его практически повсеместно: в машиностроении, авиации, космической промышленности, электро- и теплотехнике и пр. Алюминий на открытом воздухе быстро окисляется и образует на поверхности защитную микропленку, которая делает металлоизделия из алюминия химически более инертными. Однако эта естественная защита слишком мала, поэтому алюминий и его всевозможные сплавы не вечны: со временем они легко подвергаются коррозии.

Защитить изделия из алюминия, сделать их более твердыми и долговечными можно двумя способами: окрасить их с помощью порошковых красок или оксидировать, т.е. искусственно создать на его поверхности толстую пленку. Оксидирование в свою очередь подразделяется на два подвида: химическое оксидирование в растворах хрома и собственно анодирование с помощью анодной поляризации изделия в электролите.

Преимущества окрашивания в том, что готовые изделия внешне более эффектны: получаемый цвет ровнее, ярче, возможных оттенков окрашивания больше, легче получить нужную текстуру. Однако анодирование гораздо менее зависимо от качества поставляемых материалов, да и производственные линии устроены проще. Кроме того, спектр цветов и оттенков анодированных металлоизделий становится с каждым годом все больше и больше. Сейчас доступно даже радужное анодирование с созданием на поверхности изделия переливающегося блестящего покрытия.

Технология анодирования алюминия

Производственный процесс анодирования алюминия условно делится на три этапа:

1. Подготовительный — на этом этапе алюминиевое изделие необходимо тщательно механически и электрохимически обработать. От того, как качественно будет проведен этот процесс будет зависеть конечный результат. Механическая обработка подразумевает очищение поверхности, ее шлифовка и обезжиривание. Затем изделие сначала помещают в щелочной раствор, где происходит так называемое «травление», а после — в кислотный, для осветления изделия. Последний шаг — промывка изделия. Промывка проводится в несколько стадий, так как крайне важно удалить остатки кислоты даже в труднодоступных участках изделия.

2. Химическое анодирование алюминия — изделие прошедшее первичную обработку подвешивают на специальные кронштейны и помещают в ванну с электролитом между двумя катодами. В качестве электролитов могут выступать растворы серной, щавелевой, хромовой и сульфосальциловой кислот иногда с добавлением органической кислоты или соли. Серная кислота — самый распространенный электролит, однако он не подходит для сложных изделий с мелкими отверстиями или зазорами. Для этих целей лучше подходят хромовые кислоты. Щавелевая кислота в свою очередь создает наилучшие изоляционные покрытия разных цветов.

Вид, концентрация, температура электролита, а также плотность тока напрямую влияют на качество анодирования. Чем выше температура и ниже плотность тока, тем быстрее происходит анодирование, пленка получается мягкая и очень пористая. Соответственно чем ниже температура и выше плотность тока, тем тверже покрытие. Диапазон температур в сернокислом электролите колеблется от 0 до 50 градусов по Цельсию, а диапазон плотности от 1 до 3 А/дм2. Концентрация электролита может колебаться в пределах 10-20 % от объема в зависимости от требований технической документации.

3.Закрепление — непосредственно после анодирования поверхность изделия выглядит очень пористой. Чем больше пор — тем мягче поверхность. Поэтому, чтобы изделие получилось крепким и долговечным, поры нужно закрыть. Сделать это можно, окунув изделие в почти кипящую пресную воду, обработав под паром, либо поместив в специализированный «холодный» раствор.

Если изделие предполагается окрасить в какой-нибудь цвет, его не «закрепляют», так как краска прекрасно заполнит пустое пространство в порах.

Оборудование для анодирования алюминия делится на 3 вида: основное (ванны для анодирования), обслуживающее (обеспечивает непрерывную работу линии, подает ток в ванны и т.д.) и вспомогательное (на нем осуществляется подготовка алюминиевых изделий, их перемещение по линиям, складирование и пр.).

Разновидности анодирования

На сегодняшний день можно встретить компании предоставляющие различные услуги по анодированию алюминия. Это и классическое, и твердое, и цветное анодирование. Некоторые организации предлагают анодировать алюминий в домашних условиях. Каждое направление имеет свои интересные особенности, о которых мы и поговорим дальше.

Твердое анодирование алюминия — это особый способ получения сверхпрочной микропленкина поверхности алюминиевой детали. Он получил небывалое распространении в авиа, космо и автостроении, архитектуре и схожих областях. Суть процесса в том, что для анодирования берется не один электролит, а несколько в определенной комбинации. Так одна из запантенованных методик подразумевает смешение серной, щавелевой, винной, лимонной и борной кислот в пропорции 70-160/30-80/5-20/2-15/1-5 г/л. и постепенным увеличением плотности тока с 5 до 28 В. при температуре раствора до 25 градусов по Цельсию. Твердость покрытия достигается благодаря изменению структуры пористых ячеек анодной пленки.

Цветное анодирование алюминия — технология изменения цвета анодированной детали. Производится как до, так и после расположение детали в электролите. Бывает 4 видов:

Первое — адсорбационное окрашивание — происходит сразу после перемещения элемента из ванной с электролитом, т.е до заполнения пор. Деталь также погружают в раствор с красителем, разогретым до определенной температуры (55-75 град. по Цельсию), на некоторое время (обычно от 5 до 30 минут), а затем дополнительно уплотняют, чтобы увеличить окрашенный слой.

Второе — электролитическое — оно же черное анодирование алюминия — это получение сначала бесцветной анодной пленки, а затем продолжение процесса в кислом растворе солей некоторых металлов. Цвет готового изделия получается от слабобронзового до черного. Анодирование алюминия в черный цвет востребовано в производстве строительных профилей и панелей.

Третий вид — интерференционное окрашивание — то же, что и предыдущее, но позволяет получить большее количество оттенков благодаря формированию специального светоотражающего слоя.

Ну и наконец, четвертый вид — интегральное окрашивание — в раствор электролита для анодированию добавляют органические соли, благодаря которым и происходит покраска изделия.

Теперь вы получили общее представление о процессе анодирования. Как видно из всего сказанного — электрохимическое оксидирование позволяет добиться самых разных результатов, не тратя при этом огромных денег на организацию процесса. Не удивительно, что в нем так заинтересованы многие предприниматели.

Анодирование алюминия.

Особенностью алюминиевых сплавов является наличие на поверхности окисной пленки Al2O3, которая образуется на воздухе ввиду того, что алюминий обладает значительным электроотрицательным потенциалом. Эта пленка сообщает металлу некоторую пассивность, но не предохраняет от коррозии ввиду малой толщины (5-20 мкм) и высокой пористости. Лучший способ защиты алюминия от коррозии – создание на поверхности искусственных оксидных пленок значительной толщины – это оксидирование алюминия, которое может осуществляться химическим способом или электрохимическим (анодирование).

При анодировании оксидная пленка образуется в результате анодного окисления и хорошо защищает металл от атмосферной коррозии, служит грунтом под лакокрасочные покрытия, хорошо окрашивается.

При анодировании можно получать окисные покрытия с заданными свойствами: электроизоляционные, токопроводные, пористые, пластичные, твердые и др. Свойства покрытия обусловлены видом сплава, составом электролита и режимом процесса.

Анодирование алюминия проводят в сернокислом, хромовокислом, щавелевом и сульфосалициловом электролитах.

При анодировании в сернокислом электролите пленки обладают высокой адсорбцией и коррозионной стойкостью. Это наиболее экономичный и доступный электролит анодирования, но процесс требует охлаждения и кислотоупорной футеровки ванн. В серной кислоте не рекомендуется проводить анодирования деталей с узкими зазорами, клепаными соединениями, от которых трудно отмыть кислоту.

Хромовокислый электролит рекомендуется для анодирования деталей сложной формы. Его достоинство – сохранение чистоты обработки поверхности и размеров деталей при анодировании, высокая эластичность пленок, коррозионная стойкость без дополнительной обработки. Недостатки анодирования в этом электролите: высокая стоимость реактивов, необходимость нагрева, сложность контроля.

Анодирование в щавелевокислом электролите проводят для получения электроизоляционных покрытий различной степени окраски в зависимости от толщины пленки: серебристый цвет при толщине 5мкм (t = 25 0 C), желтый – при толщине 15мкм (t = 40 0 C), коричневый – 100мкм (t = 50 0 C). Содержание щавелевой кислоты при анодировании: 40 – 60 г/л, температура 15 – 25 0 С, анодная плотность тока 2,5 – 5 А/дм 2 , время выдержки 90 – 120 минут, при этом напряжение на ванне достигает 120В.

Анодирование с окраской в различные цвета

Для нанесения покрытия Ан.Окс. на алюминиевые деформируемые сплавы анодирование проводят в электролите, содержащем 170 – 200 г/л серной кислоты при температуре 15 – 23 0 С, ДА = 0,5 – 2 А/дм 2 , напряжении на ванне 10 – 20 В. Продолжительность процесса анодирования зависит от дальнейшей обработки: с уплотнением хроматами — 30 – 50 минут, с последующим окрашиванием после анодирования органическими красителями – 60 – 80 минут.

При покрытии Ан.Окс.тв. анодирование проводят при пониженной температуре от 0 до – 7 0 С при тех же концентрациях. Анодная плотность тока 2,5 – 5 А/дм 2 , катоды – сталь 12Х18Н9Т. С увеличением концентрации серной кислоты в процессе анодирования пленка растет медленнее, так как возникает подтравливание и пористость.

Читать еще:  Литье алюминия по выжигаемым моделям

Интересный вид анодирования – эматалирование проводят в растворах на основе щавелевой кислоты с добавлением органических кислот и солей. При анодировании получается непрозрачная пленка, напоминающая эмаль от светло-серого до темно-серого цвета с высокой твердостью и большим удельным сопротивлением.

Качество процесса анодирования, безусловно, зависит от подготовки поверхности перед анодированием, о чем упоминалось ранее (см. «Первые шаги в гальванике.Часть 2»).

При выполнении процесса анодирования надо помнить о мерах безопасности (см. «Безопасная гальваника»). На участке приготовления электролитов для анодирования при работе с кислотами необходимо пользоваться защитными очками и средствами индивидуальной защиты. Берегите свое здоровье!

Процесс анодирования алюминия очень перспективный, так как позволяет получать даже полностью прозрачные пленки без алюминиевой основы с заданными значениями параметрами: сопротивление, толщина, твердость и др.

Промышленный и кустарный метод анодирования алюминия

Химическое оксидирование изделий из углеродистых сталей и сплавов. Оксидирование с промасливанием и без. Подготовка поверхности деталей. Обработка деталей длиной до 1000 мм.

Для оформления заказа необходимо направить в наш адрес чертежи изделий и количество. Стоимость химического оксидирования рассчитывается исходя из площади поверхности обрабатываемых деталей, марки материала, габаритных размеров и формы изделий. Качество гальваники Вы можете оценить, заказав обработку пробной партии изделий.

  • Обозначение покрытия: Хим. Окс.; Хим. Окс. прм.
  • Обрабатываемые материалы: углеродистые стали и сплавы.
  • Габаритные размеры изделий (ДхШхВ): 1000мм.х500мм.х500мм.
  • Требования к поверхности металла: чистая без следов ржавчины и окалины.
  • Цена оксидирования рассчитывается индивидуально.

Процесс оксидирования черных и цветных металлов

Оксидирование — это процесс получения на поверхности обрабатываемого металла (обработке подвержены черные и цветные металлы) пленки, состоящей в основном из оксидов самого металла. Результатом такой обработки является повышенная коррозионная стойкость, улучшенные декоративные и специальные свойства. Оксидирование может быть химическим, электрохимическим, термическим и термохимическим.

Детали после оксидирования

При оксидировании черных металлов – воронении, на поверхности образуется темная пленка, состоящая в основном из магнитного окисла Fe3O4 толщиной примерно 2-3 мкм. Цвет такой пленки зависит от технологии оксидирования, толщины пленки, а также марки материала. При оксидировании черных металлов и сплавов наиболее распространен метод химического оксидирования в щелочных или кислых растворах.

Щелочные растворы состоят в основном из щелочи и окислителей – нитратов и нитритов натрия или калия, а также специальных добавок. Часто используется оксидирование в несколько стадий (в основном в 3 стадии), что значительно повышает защитные и декоративные свойства покрытия (насыщенный черный цвет).

При оксидировании в кислых растворах получают оксидно-фосфатные темно-серые покрытия. Это промежуточный процесс, находящийся на стыке оксидирования и фосфатирования. Растворы для данного процесса содержат первичные фосфаты железа, цинка и ортофосфорную кислоту, а также окислители – нитраты бария, кальция, пироксид марганца. Оксидно-фосфатные покрытия обладают рядом преимуществ перед оксидными, полученными в щелочных растворах: антикоррозионные свойства выше в 2-3 раза, время процесса обработки снижено в 3 раза, механическая прочность пленки значительно увеличена, антифрикционные характеристики увеличены, термостойкость также выше. Недостатками такого процесса является низкая стабильность раствора и низкие декоративные качества пленок.

Цвет получаемых в процессе оксидирования окисных пленок: золотисто-желтый фиолетовый, темно-серый, черный с синим отливом и просто черный цвет.

Состав раствора и режим оксидирования черных металлов:

  • Каустическая сода – 650-700 г/л.
  • Нитрит натрия – 250 г/л.
  • Нитрат натрия – 150-200 г/л.
  • Температура – 135-1450С.
  • Продолжительность оксидирования углеродистых сталей – 1,5 ч.
  • Продолжительность оксидирования легированных и высокоуглеродистых сталей – 2-2,5 ч.

При приготовлении раствора для оксидирования следует избегать одновременной загрузки крупных порций каустической соды, твердые куски необходимо дробить на малые части и погружать в раствор в сетчатых корзинах. Корректировка раствора в процессе оксидирования необходима из-за того, что часть раствора уносится из ванны на поверхности извлекаемых деталей, часть раствора выкипает. В раствор доливают воду до исходного уровня и контролируют температуру кипения. Снижение температуры кипения раствора указывает на понижение концентрации раствора, повышение – на повышение концентрации.

Перед оксидированием (воронением) поверхность деталей обезжиривают в щелочном растворе и тщательно промывают в теплой воде. Затем детали декапируют в 5-10% растворе серной кислоты в течение 0,5-1 минуты и промывают в проточной холодной воде.

Загружать детали в ванну необходимо медленно и осторожно – возможно разбрызгивание горячего раствора. В процессе раствор должен свободно покрывать всю поверхность деталей и все время кипеть. Каждые полчаса изделия извлекают из ванны и ополаскивают в холодной воде, затем опять погружают в ванну. Мелкие детали и метизы для оксидирования загружают в корзинки, изготовленные из перфорированного металлического листа.

В процессе оксидирования могут возникать следующие отклонения:

  1. Неоднородность оттенков окисной пленки на поверхности деталей указывает на недостаточное время выдержки.
  2. Налет похожий на ржавчину на поверхности деталей возникает из-за недостаточной концентрации окислителя – нитрита натрия.
  3. Образование зеленоватого налета свидетельствует о недостатке в растворе каустической соды.
  4. Пятна разного цвета и отсутствие окисной пленки на отдельных участках свидетельствует о некачественной обработке поверхности деталей. Если проблема возникает при оксидировании метизов – необходимо усилить встряхивания (встряхивать 2-3 раза во время процесса).
  5. Полное отсутствие окисной пленки свидетельствует о высокой концентрации раствора и соответственно высокой температуры кипения раствора. Необходимо осторожно, при перемешивании разбавить раствор водой, доводя температуру кипения до 1400С.

Общие сведения об анодировании (анодном оксидировании) алюминия.

Поверхность алюминия и его сплавов ввиду склонности к пассивации постоянно покрыта естественной окисной пленкой. Толщина пленки зависит от температуры окружающей среды и составляет обычно 2-5 нм. Коррозионную и механическую прочность алюминия можно увеличить в десятки и сотни раз, подвергая его электрохимическому оксидированию (анодированию). Примеры анодированных деталей приведены на рисунке 1.

Анодирование — это процесс получения из алюминия оксидной пленки электрохимически из водных растворов. Плотность такого покрытия составляет 2,9-3,8 г/см3, в зависимости от режима получения.

Ан.Окс.нв — анодирование алюминия с наполнением в воде;

Ан.окс.нхр — анодирование с наполнением в растворах хроматах;

Ан.Окс. (цвет красителя) — анодирование с наполнением в красителе, пример — Ан.окс.ч;

Аноцвет — цветное анодирование, полученное непосредственно из ванны анодирования;

Ан.Окс.тв — твердое анодирование;

Ан.Окс.из — электроизоляционное анодирование;

Ан.Окс.эмт. (цвет красителя) — эматаль с наполнением в красителях, пример — Ан.окс.эмт.ч;

Ан.окс.хр — анодирование из хромовокислого электролита.

2940-4900 МПа — А5, А7, А99, АД1, АМг2, АМг2с, АМг3, АМг5, АМг6, АМц.

4900 МПа — для эматалиевого покрытия.

Анодно-оксидные покрытия разделяют на следующие группы:

• защитные (9-40 мкм) — предъявляются требования только по коррозионной стойкости;

• защитно-декоративные (9-40 мкм) — важна не только коррозионная стойкость, но и внешний вид (сюда же можно отнести цветные и окрашенные покрытия);

• твердые (обычно >90 мкм) — в первую очередь нужна повышенная микротвердость поверхности. Могут также выполнять функцию электроизооляционных);

• электроизоляционные (40-90 мкм) — оценивается величина пробивного напряжения;

• тонкослойные (до 9-15 мкм) — используются, как правило, под окраску, либо для сохранения глянца поверхности после покрытия;

• покрытия с комбинированными свойствами.

Рисунок 1 — Анодирование металла. Примеры.

В качестве электролитов при анодировании применяются:

• Малоагрессивные фосфорная, лимонная, борная кислота; • Агрессивные серная, сульфосалициловая кислота, хромовый ангидрид.

Анодирование металла всегда идет при повышенном напряжении, чаще всего от 12 до 120 В. Иногда напряжение может достигать огромных для гальваники значений — до 600В.

Выделяющиеся на аноде продукты реакции могут:

• полностью растворяться (покрытие не образуется);

• создавать на поверхности металла прочно сцепленное тончайшее (десятки нанометров) компактное электроизоляционное оксидное покрытие;

• частично растворяться в электролите и образовывать пористое оксидное покрытие толщиной в десятки и сотни микрометров.

После анодирования пористое покрытие может оставаться «как есть», уплотняться в воде, либо наполняться. В первом случае покрытие прекрасно подходит под нанесение лакокрасочных материалов и оклеивание. Во втором покрытие сохраняет серебристый цвет и становится более коррозионно-стойким. В третьем случае покрытию можно придать цвет без нанесения лакокрасочных материалов. Подробнее об этом написано в разделе 6.

Химическое оксидирование с промасливанием. Финишная обработка деталей.

После процесса оксидирования (воронения) детали промывают в холодной воде и помещают в 3-5% раствор хромовой кислоты, затем опять промывают водой и погружают в слабый мыльный раствор, нагретый до 70-800С. После мыльного раствора детали не промывают, сушат и помещают на 5-6 минут в веретенное масло (минеральное масло), нагретое до 105-1100С.

Промасливание проводят с целью повышения антикоррозионных свойств оксидных пленок. Для промасливания используют минеральные масла, консистентные ингибированные смазки. Промасливают, окуная мелкие детали в ванну с маслом или, в случаях обработки крупногабаритных изделий наносят масло механически.

Другие способы оксидирования

Способ оксидирования, известный очень давно, это погружение нагретых деталей в льняное масло. Изделия нагревают в печи до 450-4700С и погружают на 5-10 минут в льняное масло, процесс повторяют несколько раз. В результате получается плотная оксидная пленка черного цвета.

Оксидирование стали возможно в кислых растворах, которое в отличие от щелочного метода проводится при температуре до 1000С. Различают два состава и режима такого оксидирования:

  1. Раствор состоит из азотнокислого кальция – 15-30 г/л, ортофосфорной кислоты и перекиси марганца по 0,5-1 г/л. Рабочая температура – 1000С, время выдержки – 40-45 минут.
  2. Раствор состоит из гипосульфита натрия – 80 г/л, хлористого аммония – 60 г/л, ортофосфорной кислоты (уд. вес 1,6) – 5 мл/л, азотной кислоты (уд. вес 1,4) – 2 мл/л. Рабочая температура – 60-700С, время выдержки – 15-20 минут. Возможно проведение процесса без нагрева, если увеличить время выдержки до 40-60 минут.

После щелочного оксидирования детали промывают в холодной воде и обрабатывают раствором хромпика 120-150 г/л, нагретом до 60-700С. После обработки и сушки детали промасливают.

Возможно Вас заинтересуют статьи:

Цветное оксидирование металла. Патинирование серебра, меди, латуни.

Гальванические покрытия по своему назначению подразделяются на функциональные и декоративные. Функциональные покрытия служат для защиты…

Анодирование алюминиевых деталей в домашних условиях

Алюминий и сплавы на его основе широко используются в производстве автомобильных и мотоциклетных автозапчастей в том числе автомобильных дисков. В…

Химическое фосфатирование

Химическое фосфатирование углеродистых сталей, чугуна, цветных металлов. Толщина фосфатной пленки от 7 мк. до 50 мк. Обработка поверхности с…

Способы анодирования алюминия

Разработано несколько способов обработки алюминиевых сплавов, но широкое применение нашел химический способ в среде электролита. Для получения раствора используют кислоты:

  • серную;
  • хромовую;
  • щавелевую;
  • сульфосалициловую.

Для придания дополнительных свойств в раствор добавляют соли или органические кислоты. В домашних условиях в основном используют серную кислоту, но при обработке деталей сложной конфигурации предпочтительнее использовать хромовую кислоту.

Процесс происходит при температурах от 0°С до 50°С. При низких температурах на поверхности алюминия образуется твердое покрытие. При повышении температуры процесс протекает значительно быстрее, но покрытие обладает высокой мягкостью и пористостью.

Технология твердого анодирования алюминия

Кроме химического метода в некоторых случаях используются следующие методы анодирования алюминия:

  • микродуговое;
  • цветное:
      адсорбцией;
  • опусканием в электролит;
  • опусканием в красящий раствор;
  • гальваникой;
  • интерферентное;
  • интегральное.
голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]