Газовая смесь для сварки полуавтоматом
Какая сварочная газовая смесь лучше?
Эффективность высокотемпературной обработки металлов повышают сварочные смеси защитных газов, используемых для создания защитного облака над расплавленным металлом. Специальные газосмеси использовать при сварке гораздо выгоднее, чем чистые газы. Разработано несколько стандартизированных составов, применяемых для углеродистых, низко- и высоколегированных сталей и цветных металлов.
Экспериментально доказано, что смеси повышают качество расплава, снижают количество металлических брызг, увеличивают производительность работы сварщика. Сварочные швы становятся пластичными, заметно стабилизируется горение дуги. Влияние вредных факторов снижается за счет уменьшения задымленности, улучшаются условия труда.
Свойства и назначение
Сварочная смесь, создающая защитное облако над ванной расплава способна оказывать на процесс сварки как положительное, так и отрицательное воздействие. Инертные газы ведут себя по-разному:
- Аргон за счет ионизации воздуха поддерживает дугу и обеспечивает качественный перенос металла. При работе с толстостенными заготовками, прокатом из металлов, имеющих высокую теплопроводность, аргон, характеризующийся слабой отдачей энергии, малоэффективен.
- Гелий с этой точки зрения предпочтительнее, но меньше влияет на стабильность горения дуги и не улучшает перенос металла присадки на поверхность заготовок.
- Углекислый газ обеспечивает хорошую защиту за счет высокой плотности, снижает разбрызгивание жидкого металла.
Каждый отдельный газ обладает уникальными свойствами, в смеси они нивелируют отрицательное воздействие отдельных компонентов, усиливают положительное влияние. Составы подбирались методом проб и ошибок с целью повышения качества швов и скорости сварки.
В смеси защитные газы намного эффективнее защищают ванну расплава, снижают вероятность образования дефектов.
Смеси газов
Для сварки используют 4 газообразных бесцветных вещества, вытесняющие из рабочей зоны:
- водород, способствующий охрупчиванию металлов;
- азот, образующий твердые шлаковые соединения;
- кислород, активно окисляющий металлы.
Вытеснение газовоздушных компонентов происходит за счет высокой плотности защитных газов, они формируют малоподвижное облако. У всех сварочных смесей газов удельный вес больше, чем у воздуха. Концентрация компонентов подбиралась экспериментальным путем, учитывалось влияние газов на режим сварки. Смеси на основе аргона значительно расширяют возможности сварки, повышают эффективность работы сварщиков. Минимизируют риски образования дефектов в сварочных швах.
Аргон и углекислый газ
Для сваривания цветных металлов, профиля и проката из высоколегированных сталей используется сварочная смесь аргона и углекислоты. Аргон снижает активность углекислоты, а CO2 увеличивает теплопередачу аргона. Сварка углеродистых и низколегированных сталей в защитном облаке Ar+CO2 намного эффективнее, чем в каждом отдельном газе. При концентрации углекислоты в пределах 20% толстостенные металлические конструкции провариваются даже при сильной загрязненности поверхности.
Аргон и кислород
Состав применяют для сваривания низколегированных и легированных никелем сталей. При небольшой концентрации кислорода удается избежать пористости швов, аргон препятствует образованию окислов. Комбинация Ar+O2 применяется с различными видами сварочной проволоки, расширяет возможности сварочного процесса за счет повышения энергии дуги, стабильного горения. Металл быстрее проваривается. Формируются ровные шовные валики при равномерном прогреве присадочного прутка. Прочность соединения увеличивается за счет расширения диффузионного слоя.
Аргон и гелий
Инертные газы сочетают в разных пропорциях. Самые распространенные составы 7:3 и 1:1. Композиция Ar+He используется при работе с различными металлами:
- чугуном различной плотности;
- с низколегированными и легированными сталями с высоким содержанием никеля и хрома;
- цветными сплавами на основе меди, алюминия;
- тугоплавкими заготовками.
Смесь инертных газов исключает образование окалины, трещин, раковин. Часто применяется в наукоемких отраслях для автоматической сварки, где требуется высокое качество швов.
Аргон и водород
Комбинация Ar+H разрабатывалась для соединения сталей с аустенитной структурой, обладающих жаропрочностью. Смесь обеспечивает эластичность швов, процент водорода зависит от марки стали, львиную долю композиций составляет аргон, формирующий плотное защитное облако.
Аргон и активные газы
Концентрация углекислого газа в подобных газосмесях не превышает 20%, кислорода – 2%. При работе с тонкими видами проката и профиля снижают концентрацию углекислого газа, увеличивают содержание кислорода для быстрого прогрева заготовок в месте соединения. При работе с толстыми деталями повышают содержание углекислого газа. Для работы с медными сплавами в композицию вводят незначительное количество азота.
Что лучше: сварочная смесь или углекислота?
Чем лучше варить, специалисты решают самостоятельно, учитывая прочность соединений, затраты на расходные материалы. Для изоляции расплава, образуемого в процессе сварки, можно использовать инертные газы аргон и гелий, углекислоту или сварочную смесь. С введением инертных газов, которые не взаимодействуют с расплавом, в активные, снижается способность углерода растворяться в жидком металле. СО2 – активный газ, при использовании в чистом виде он насыщает стали и цветные металлы.
Преимущества применения газосмеси:
- облегчается струйный перенос электродной наплавки;
- швы получаются более пластичные;
- снижается риск образования пористости;
- ускоряется процесс расплавления металла;
- увеличивается прочность соединений;
- меньше дымление, выделяемые вещества удерживаются в зоне расплава;
- при неравномерной подаче присадочной проволоки сохраняется ритмичность работы;
- из-за минимизации разбрызгивания снижается расход электродов и проволоки.
Достоинства сварки в атмосфере углекислого газа:
- низкая стоимость;
- возможность варить в любом пространственном положении;
- хорошая проварка стыков.
Производительность сварочных работ при использовании специальных смесей, защищающих ванну расплава от окисления, повышается на 50%, при этом потребление электроэнергии не увеличивается.
Подбор сварочной смеси для полуавтомата
Присадочная проволока выпускается без защитного покрытия, в полуавтоматах предусмотрена подача защитных газов. Их смешивают с расчетом, чтобы создавалась нужная температура горения, при которой металлические заготовки и проволока не слишком быстро расплавлялись. При рациональном подборе газосмеси для полуавтоматической сварки упрощается процесс формирования швов.
Таблица выбора газосмеси для различных сплавов:
При использовании вольфрамового электрода и проволочной присадки применяют составы из двух инертных газов:
- НН-1 (полное название Helishield-Н3), в этой смеси концентрация гелия в пределах 30%, аргона не более 70%. газосмесь обеспечивает более эффективный нагрев, увеличивается скорость плавления металла, формируется ровная поверхность шва.
- НН-2 (международная маркировка Helishield-H5) – это в равных пропорциях смешанные два инертных газа: аргон и гелий. Универсальная смесь применяется для соединения черных и цветных заготовок практически любой толщины.
Компонентный и количественный состав оказывает влияние практически на все параметры и режим сварки металлов.
Применение смесей
Бескислородные смеси выбирают при скоростной проходке и сварке цветных металлов. Они дают великолепные чистые швы с гладким профилем, окисление поверхности незначительное, обеспечивают низкий уровень армирования и обеспечивает высокую скорость проходки. Придают стабильность электрической дуге при соединении материалов толще 9 мм, снижают вероятность появления дефектов шва.
При подаче газовой смеси полуавтоматом снижается скорость подачи проволоки, быстрее нагревается горелка. Приходится корректировать режим работы, подбирать массивные головки. Для качественной работы со смесями необходимы профессиональные навыки.
При выборе готовых сварочных газовых смесей с кислородом учитывают особенности составов. К-2 считается идеальным для черных и низколегированных сталей. Другие разрабатывались для металла различной толщины, глубокого провара и сварки тонкостенного листа, профиля без деформации. Кислородосодержащие составы применяются для коротких и длинных швов, реставрационной наплавки изношенных деталей. Могут использоваться повсеместно: для роботов-автоматов, ручной, полуавтоматической сварки во всех пространственных положениях. Выбирают специальные составы для профилированного проката из сортовых сталей, для наплавки.
При ручной сварке важно соблюдать расстояние от заготовок до сопла. Необходимо постоянно поддерживать расстояние в пределах 15–20 мм от стыка, чтобы не допустить непроваров. Горелка размещается под прямым углом. Следует учитывать, что кислородные смеси увеличивают текучесть расплавленного металла, при работе в потолочном и вертикальном положении возможны проблемы.
Самостоятельное смешивание газов
Теоретически смесь можно приготовить непосредственно на рабочем месте, на сварочных участках предусмотрены специальные посты с установкой ротаметров – аппаратов, контролирующих расход компонентов за единицу времени из каждого баллона. По показателям ротаметров с помощью редукторов регулируют состав газовой смеси, подаваемой к рабочим местам сварщиков.
При работе с несколькими баллонами одновременно состав сварочной смеси не будет идеальным. Делая газосмеси самостоятельно невозможно добиться точного процентного содержания компонентов до десятых. Обязательно увеличится расход газов и, соответственно, присадки.
Защитный сварочный газ – оптимальная смесь, используемая при термической обработке металлов. Готовые составы заказывают у специализированных поставщиков или непосредственно на заводах-изготовителях.
Газ для сварки полуавтоматом
- Информационные материалы по применению газов
- Часто задаваемые вопросы FAQ
- Новости
Сварочный полуавтомат повышает качество шва и скорость работы сварщика. Механизированная сварка не предполагает замену электродов — вместо прутков в таком аппарате используется проволока, подаваемая с катушки. Поэтому сварщику не приходиться разрывать шов, теряя время и нарушая герметичность соединения. Кроме того, работа в полуавтоматическом режиме позволяет соединять заготовки толщиной от десятых долей миллиметра до нескольких сантиметров, причем конструкционным материалом соединяемых элементов может быть практически любой металл или сплав. Однако эти преимущества невозможны без использования специального газа для сварки полуавтоматом, защищающего сварочную ванну.
Какой газ нужен для механизированной сварки
Технология полуавтоматической сварки предполагает использование в качестве флюса активного или защитного газа. Первый меняет физико-химические характеристики шва, второй — защищает металл от окисления, что особенно актуально при соединении заготовок из алюминия или быстро окисляемых сплавов.
Типичными представителями инертной группы являются аргон (Аг) и гелий (Не). В активную группу входит азот (N), кислород (O), углекислый газ (CO2). Самыми популярными смесями являются:
- аргоно-углекислый состав (Аг + СО2) — инертно-активная среда, снижающая разбрызгивание электрода;
- аргоно-гелиевый состав (Аг + Не) — защитная среда, повышающая тепловую мощность дуги;
- аргоно-кислородная газовая смесь (Аг + О2) — инертно-активная среда для низколегированных и легированных сталей;
- углекисло-кислородная смесь (СО2 + О2) — активная среда, повышающая производительность полуавтомата.
Критерии выбора газа или смеси для полуавтомата
При выборе смеси или технически однородной среды принято обращать внимание на следующие критерии: тип конструкционного материала свариваемых заготовок, толщину формируемого шва, диаметр проволоки.
В итоге выбор смеси для сварочных работ сводится к изучению таблицы, в которой указаны составы, рекомендуемые для каждого металла или сплава, с учетом глубины ванны и других характеристик.
Кроме того, опытный сварщик учитывает «бонусный» эффект, который дает та или иная среда. Например, углекислые газы обеспечивают минимальное разбрызгивание присадочного металла (электрода), поэтому с их помощью удобно варить потолочные швы. В этом случае СО2 убережет сварщика от контакта с каплями расплавленного металла.
Технология сварки в полуавтоматическом режиме
Принцип работы сварочного полуавтомата основан на хорошо изученном электродуговом процессе. Разница потенциалов между электродом и заготовкой позволяет сформировать электрическую дугу, температуры которой хватит на расплавление присадочного и свариваемого металла. Застывшая присадка контактирует с металлом заготовки на атомарном уровне, образуя шов с прочностью до 90% от показателя основного конструкционного материала.
Однако в работе полуавтомата есть свои особенности. Во-первых, проволока-электрод подается в зону сварочной ванны непрерывным потоком, проходя сквозь токопроводящий мундштук. Причем расход присадочного металла можно регулировать вручную, нажимая на кнопку подачи. Во-вторых, вместо классического «твердого» флюса, образующего газовое облако при горении дуги, полуавтомат использует газовые смеси или технически чистые среды. Причем подача газа осуществляется непрерывно, как до появления дуги, так и после ее разрыва.
Благодаря этому уменьшается количество брызг, стабилизируются параметры дуги, повышается производительность труда сварщика, снижается общая трудоемкость любого сварочного процесса.
Особенности выполнения сварки под газом
Техника работы на полуавтомате практически не отличаются от принципов применения классических аппаратов. С помощью полуавтомата можно варить горизонтальные и вертикальные швы, выполнять прихватывание заготовок, проваривать герметичные соединения, формировать сопряжение встык и внахлест.
Способ формирования соединений полуавтоматическим сварочным аппаратом не отличается от классических методик, реализуемых с помощью ММА-оборудования. Температурные режимы и сила сварочного тока определяется по общепринятой схеме — исходя из толщины стыков и диаметра электрода.
Единственной индивидуальной особенностью, которой обладает полуавтоматический газосварочный процесс, является простота соединения тонких заготовок. Поэтому полуавтомат используется преимущественно в кузовном ремонте и во время сборки тонколистовых металлоконструкций.
Основные преимущества сварки с газовой защитой
- Узкая зона высокотемпературного воздействия, поэтому MIG-MAG процессы не меняют свойства свариваемых металлов.
- Отсутствие задымления в зоне сварочной ванны, что облегчает визуальный контроль качества шва.
- Универсальность применения — MIG-MAG процессы совместимы с любыми металлами: от титана или алюминия до высоколегированной или конструкционной стали.
- Отсутствие ограничений по пространственному положению детали — отрегулировав напор горелки, можно варить потолочные или наклонные швы, не испытывая никаких затруднений.
- Нет ограничений по толщине — эта технология допускает сваривание листовых заготовок с толщиной от 0,2-0,5 миллиметра. Верхняя граница толщины соединения определяется только мастерством сварщика.
- Отсутствие необходимости зачищать швы даже при многослойной наплавке — флюс улетучивается после прекращения подачи смеси из горелки.
- Максимально возможная производительность труда даже при средней квалификации сварщика.
Все эти преимущества станут доступны только в случае поставки качественной смеси, подготовленной по ГОСТ и ТУ. Некачественные составы приведут к потере прочностных характеристик.
ООО «ИТЦ Промэксервис» готово предоставить заказчику высококачественный газ для сварочных работ, в любых объемах, с доставкой по Москве или Подмосковью. Мы работаем с крупными компаниями и физическими лицами, предлагая высокое качество и низкие цены. ИТЦ Промэксервис — лидер рынка с 1999 года.
Составы газовых смесей для сварки
Технологические особенности сварки металлов с привлечением инертных газов предусматривают использование специальных газовых смесей. Благодаря им качество сварочного шва существенно возрастает. Газовые смеси для сварки изготавливаются на основе таких известных составляющих, как гелий, кислород, аргон и углекислота.
Разновидности
Взятые в установленном техническими нормативами соотношении, перечисленные выше составляющие могут образовывать следующие смеси газов:
- аргон плюс углекислота;
- аргон в соединении с гелием и кислородом (водородом);
- соединение углекислоты и кислорода.
Некоторые из этих комбинаций оптимально подходят для полуавтомата, в конструкции которого уже предусмотрена возможность их эффективного использования. Однако к рассмотрению этого вопроса удобнее будет перейти после более подробного ознакомления с основными сварочными смесями.
Аргон и углекислый газ
Подготовленная в определённой пропорции эта смесь газов наиболее продуктивна при работе с углеродистыми и низколегированными сталями. При сравнении эффективности данной комбинации с аналогичными показателями сварки на чистых газах обнаруживается, что этот сварочный состав облегчает струйный перенос вещества электрода.
Кроме того, швы на готовом изделии, в отличие от сваривания на чистой углекислоте, получаются более ровными и пластичными. При работе с указанной смесью газов заметно снижается возможность образования пор.
Аргон в сочетании с кислородом
Аргонокислородная смесь очень часто требуется для эффективного сплавления легированных и низколегированных сталей. Небольшая добавка кислорода в рабочую комбинацию позволяет не только исключить образование пор, но и заметно расширить возможности сварочных процедур.
Прежде всего, это касается изменения пределов регулировки токов, а также применения более широкого набора разновидностей сварочной проволоки. Естественно, что качество образуемого при этом сварочного шва заметно возрастает, вследствие чего смеси этого состава пользуются повышенным спросом.
Углекислота и кислород
Применение этой сварочной смеси газов позволяет получить требуемый положительный эффект, проявляющийся в следующем:
- наблюдающееся во время сварки разбрызгивание металла ощутимо снижается;
- вследствие этого улучшается качество формируемого шва;
- повышается температура в рабочей зоне, что определённым образом влияет на эффективность проводимых работ (их производительность резко возрастает).
Однако у этого сварочного реагента имеется один существенный недостаток, связанный с повышенным окислением металла в зоне сварки. Как следствие, заметно ухудшаются механические параметры формируемого соединения. К тому же при данном соединении образуется вредный для человека угарный газ.
Особенности аргоновых и углекислотных соединений
Перед тем как определиться, какой газ использовать в смеси, надо рассмотреть особенности применения каждого их них.
Согласно ТУ 2114-001-99210100-09 все перечисленные выше составы могут формироваться в самых различных пропорциях, отличающихся процентным содержанием каждой из составляющих. В подавляющем большинстве таких пропорций аргон или кислород содержится в объёмах, составляющих основную массу вещества (от 88 до 98%). Дополняющие их добавки (углекислый газ, в частности) редко превышают в объёмном исчислении 5-15 %.
Аргон в пропорциональном соотношении с гелием чаще всего применяется с целью обработки цветных металлов и их производных. Основные типы заготовок, для обработки которых используется аргонодуговая сварка – это медные, алюминиевые, никелевые, а также хромоникелевые сплавы.
Сварочные смеси из сочетания аргона с углекислым газом нередко применяются с целью подогрева металла перед сваркой или постепенного его охлаждения по окончании работ. Как правило, такая процедура организуется в случаях крайней необходимости.
Этот газообразный состав достаточно взрывоопасен, так что работа в среде СО2 требует от оператора соблюдения мер безопасности при его подготовке и использовании.
Особого внимания требует процесс сваривания металлических заготовок в смесях с высоким содержанием углекислого газа. Дело в том, что при его соединении с кислородом воздуха образуется опасный для здоровья человека угарный газ, для защиты от которого оператор должен работать в специальной маске.
Таким образом, аргон и углекислота в сочетании с рядом активных добавок относятся к универсальным сварочным смесям газов, применяемым при работе с большинством марок чёрных и цветных металлов. Их сочетание наряду с высокой эффективностью использования отличается сравнительно низкой ценой.
Для полуавтоматов
При рассмотрении этого вопроса надо акцентировать внимание на соединениях аргона с водородом и гелием, которые широко применяются для сварки никеля, высоколегированных и нержавеющих сталей и их сплавов. Каждая из этих смесей классифицируется именно как газ для сварки на полуавтомате, однако, в определённых ситуациях они могут использоваться и просто для формовки.
Ещё одним вариантом сварочной смеси, рассчитанной на сваривание в полуавтоматическом режиме, является сочетание аргона и СО2 (углекислоты). В основу применения этого комбинированного состава заложен принцип максимальной защиты металла и сведения к минимуму вредных для него побочных эффектов.
В начале работы с этим составом, прежде всего, поджигается горелка, через сопло которой сварочную смесь из аргона и углекислоты подают в рабочую зону.
Обратите внимание, что эта же струя может предназначаться для подогрева металла, если этого требуют технические условия на сварку.
После запуска горелки и подогрева материала с помощью неплавкого электрода с вольфрамовым покрытием поджигается электрическая дуга. В то же самое время специальной кнопкой включается подача плавильной проволоки, для защиты которой и применяется данная смесь газов.
Качественная сварка всеми перечисленными методами предполагает грамотный расчёт объёмов требуемого газа, а также выбор оптимальной скорости подачи сварочной плавильной проволоки. С этой целью разработаны графики и типовые режимы обработки металлов, рассчитанные для каждого вида газообразной смеси индивидуально.
Температура горения сварочной смеси выбирается с тем расчётом, чтобы сам металл и проволока не плавились от неё, так что отключать горелку при разовом удалении от ванны совсем не обязательно.
По завершении формирования шва для его постепенного остывания нередко используют приём кратковременного подогрева тем же горючим составом (по необходимости).
С данными таблицы по сварочным смесям, рекомендуемым для работы с полуавтоматом, можно ознакомиться в таблице:
Исходный материал | Толщина, мм | Рекомендуемая смесь | Диаметр сварочной проволоки, мм | Скорость сварки, мм/мин | Ток сварки Iсв, А | Напряжение дуги Uд, В | Скорость подачи проволоки, м/мин | Расход газа, л/мин |
Углеродистые конструкционные стали | 1,0 | К-3.1 | 0,8 | 350-600 | 45-65 | 14-15 | 3,5-4,0 | 12 |
1,6 | К-3.1 | 0,8 | 400-600 | 70-80 | 15-16 | 4,0-5,3 | 14 | |
3,0 | К-3.2 | 1,0 | 280-520 | 120-160 | 17-19 | 4,0-5,2 | 15 | |
6,0 | К-3.2 | 1,0 | 300-450 | 140-160 | 17-18 | 4,0-5,0 | 15 | |
6,0 | К-3.2 | 1,2 | 420-530 | 250-270 | 26-28 | 6,6-7,3 | 16 | |
10,0 | К-3.2 | 1,2 | 300-450 | 140-160 | 17-18 | 3,2-4,0 | 15 | |
10,0 | К-2 | 1,2 | 400-480 | 270-310 | 26-28 | 7,0-7,8 | 16 | |
10,0 | К-2 | 1,2 | 300-450 | 140-160 | 17-18 | 3,2-4,0 | 15 | |
10,0 | К-3.3 | 1,2 | 370-440 | 290-330 | 26-31 | 10,0-12,0 | 17 | |
Легированные стали | 1,6 | НП-1 | 0,8 | 410-600 | 70-85 | 19-20 | 6,5-7,1 | 12 |
3,0 | НП-2 | 1,0 | 400-600 | 100-125 | 16-19 | 5,0-6,0 | 13 | |
6,0 | НП-2 | 1,0 | 280-520 | 120-150 | 16-19 | 4,0-6,0 | 14 | |
6,0 | НП-2 | 1,2 | 500-650 | 220-250 | 25-29 | 7,0-9,0 | 14 | |
10,0 | НП-3 | 1,2 | 250-450 | 120-150 | 16-19 | 4,0-6,0 | 14 | |
10,0 | НП-3 | 1,2 | 450-600 | 260-280 | 26-30 | 8,0-9,5 | 14 | |
10,0 | НП-3 | 1,2 | 220-400 | 120-150 | 16-19 | 4,0-6,0 | 15 | |
10,0 | НП-3 | 1,2 | 400-600 | 270-310 | 28-31 | 9,0-10,5 | 15 | |
Алюминиевые сплавы | 1,6 | НП-1 | 1,0 | 450-600 | 70-100 | 17-18 | 4,0-6,0 | 14 |
3,0 | НП-1 | 1,2 | 500-700 | 105-120 | 17-20 | 5,0-7,0 | 14 | |
6,0 | НП-1 | 1,2 | 450-600 | 120-140 | 20-24 | 6,5-8,5 | 14 | |
6,0 | НП-2 | 1,2 | 550-800 | 160-200 | 27-30 | 8,0-10,0 | 14 | |
10,0 | НП-2 | 1,2 | 450-600 | 120-140 | 20-24 | 6,5-8,5 | 16 | |
10,0 | НП-2 | 1,6 | 500-700 | 240-300 | 29-32 | 7,0-10,0 | 16 | |
10,0 | НП-2 | 1,2-1,6 | 400-500 | 130-200 | 20-26 | 6,5-8,0 | 18 | |
10,0 | НП-3 | 1,6-2,4 | 450-700 | 300-500 | 32-40 | 9,0-14,0 | 18 |
В заключение надо напомнить, что газовые смеси – это неотъемлемая составляющая некоторых видов сварочных работ, которая согласно спецификации относится к категории расходных материалов.
При их применении очень важно установить точное соотношение компонентов, благодаря которому удаётся добиться высоких показателей сварочного процесса. Это правило справедливо как для начинающих сварщиков, так и для профессионалов, располагающих богатым опытом работы в газовых средах.
Сварочные смеси на основе аргона. Какие бывают и как влияют на процесс полуавтоматической сварки низколегированных и углеродистых сталей
Исследования сварки в среде различных смесей на основе аргона (далее Ar) берут свое начало с 70-х годов прошлого столетия, однако наибольшее практическое распространение сварочные смеси получили в 90-х годах, особенно в европейских государствах, таких как Германия, Великобритания, Франция, Швеция. На сегодняшний день применение смесей Ar в вышеперечисленных государствах занимает не менее 95% рынка.
Многие отечественные предприятия, напротив, до сих пор применяют СО2 для низколегированных и углеродистых сталей, несмотря на неоспоримые преимущества использования смесей на основе Ar.
Атмосфера, защищающая ванну, играет важнейшую роль в MAG-процессе. Ее воздействие сказывается на свойствах сварного шва, скорости сварки, загрязнении атмосферы рабочего поста.
Переход на смеси на основе Ar вместо СО2 позволяет оптимизировать сварку, в том числе сделать ее более экономичной. Смеси Ar пришли на смену углекислому газу и теперь используются в Европе при работе с черными сталями ( или со сталями с небольшим количеством легирующих добавок). При сварке черных сталей в чистом Ar в шве образуются поры, поэтому используют смеси с добавочными газами — кислородом и/или углекислотой, нормализующие электродугу и улучшающие весь процесс в целом. Добавление к Ar кислорода практически не меняет поведение дуги и ее влияние на ванну и каплю. Также в качестве добавки может выступать гелий, особенно, когда требуется повышенная скорость сварки. Количество добавочного газа зависит от толщин, требуемой скорости, метода: ручной, автоматизированный либо роботизированный.
Выбор газа, прежде всего, оказывает воздействие на следующие ключевые параметры MAG-сварки:
- Поджиг дуги и ее управляемость.
- Производительность и, как следствие, затраты на производство.
- Вид металлопереноса и размер капли.
- Защита от газов, содержащихся в воздухе.
- Возникновение окалины и количество брызг.
- Мех.характеристики шва.
- Геометрия шва и глубина проплава.
- Количество и состав выделяющихся аэрозолей.
Преимущества смеси на основе Ar.
Помимо нарушений режимов сварки, состав защитной среды является наиболее важным фактором, влияющим на возникновение брызг. Использование чистого СО2 приводит к повышенному «брызгообразованию» , как результат к нестабильности электродуги. Чем больше СО2 в смеси с Ar, тем большее брызг образуется в процессе полуавтоматической сварки. Чем больше их размер, тем интенсивнее выделение теплоты. Опыты показали, что капли-брызги металла с диаметром более 0,8 мм содержат такое количество теплоты, что привариваются к рабочей плоскости. В большинстве случаев это влечет за собой последующую зачистку или подрезку резцом.
На рис. 1 проиллюстрировано, как доля брызг размером более 0,8 мм. увеличивается с ростом процента СО2 в смеси с Ar.
Шлак, покрывающий шов, состоит из оксидов и выглядит как коричневые стеклообразные «островки». Чем больше окислительных элементов содержится в смеси (СО2 или О2), тем больше оксидов будет образовываться. Они должны быть удалены перед покраской или другой операцией.
Мех.свойства сварного соединения также очень подвержены влиянию состава защитного газа. Чем ниже содержание СО2, тем «чище» металл шва, тем меньше оксидных включений он содержит. Также микроструктура становится более мелкозернистой, что благоприятно сказывается на ударной вязкости металла шва (рис. 2).
Усталостная прочность шва также в некоторой степени зависит от защитного газа. Сварка в смесях на основе Ar позволяет получить более плавный переход между швом и основным металлом, чем при использовании чистого СО2 (рис. 3). К сварным соединениям, подвергающимся динамическим нагрузкам, предъявляются повышенные требования к усталостной прочности. Если переход недостаточно плавный, впоследствии потребуется дорогостоящая мех.обработка.
Скорость сварки. При ее увеличении в чистом СО2 профиль сварного шва становится более выпуклым, а также ухудшается перенос металла, что ограничивает скорость по сравнению со сваркой в смесях на основе Ar (рис. 3, 4). В данном примере были использованы три различных газа в процессе MAG-сварки стали с небольшим количеством легирующих добавок. Скорость подачи проволоки сохранялась неизменной, напряжение было установлено на наиболее подходящем уровне для каждого защитного газа. Скорость сварки увеличивалась до тех пор, пока шов не становился слишком выпуклым. В результате при снижении процента содержания СО2 в защитной смеси скорость могла быть увеличена (рис. 4).
Как уже упоминалось, различные защитные газы позволяют получить разнообразную геометрию сварного шва. При работе в смесях на основе Ar металл в сварочной ванне более жидкий, что делает профиль шва более сопряженным с основным металлом, невыпуклым. Сварка же в чистом СО2 делает его сильно выпуклым, переходы — неплавные. Кроме того, это приводит к низкой усталостной прочности, что также влечет за собой перерасход присадочной проволоки при сварке в СО2 для получения необходимого катета шва (рис.5).
Задание режимов. При использовании аргоновых смесей гораздо легче настроить наиболее подходящие сварочные режимы, чем при работе с чистым СО2. Диапазон токов, в которых дуга остается стабильной, гораздо шире в смесях Ar. Чтобы избежать дефектов в шве очень важно выполнить правильную настройку аппарата.
Риск прожога. Напряжение в составах на основе Ar на несколько вольт ниже, чем при сварке в СО2 при той же скорости движения сварочной проволоки. Это означает, что в сварочную ванну передается меньше тепловой энергии и риск прожога тонких пластин значительно снижается. Итак, выгоды, получаемые при переходе с чистого СО2 на смеси Ar и СО2, следующие:
● снижение потерь металла вследствие разбрызгивания;
● небольшое количество шлака, всплывающего на поверхность шва;
• улучшение мех. свойств шва (пластичные свойства, вязкость, усталостная прочность);
● меньшее выгорание легирующих добавок, что означает более высокое значение предела текучести и прочности при растяжении;
● плоский сварной шов с отсутствием резких «скачков» при переходе к основному металлу;
● более высокие скорость и эффективность.
● более простая установка оптимальных сварочных режимов , расширенный диапазон, в котором дуга стабильна — малый риск получения дефектов в шве;
● меньший риск проплавления, особенно, если речь идет о тонких листах за счет пониженного количества передаваемого тепла.
Виды некоторых смесей, которые можно найти сейчас на рынке сварочных материалов перечислены ниже.
● 92% Ar, 8% СО2. Используется в роли защитной атмосферы для различных сталей в режиме струйного переноса металла. Количество брызг, вылетающих из-под проволоки, минимизируется, что делает данную смесь идеальной для применения в цехе, где требуется экономия времени на зачистку (экономия средств).
Практически отсутствует окисление шва, что отлично для процессов с последующей окраской. Используется в различных отраслях производства, от выпуска грузовых автомобилей до судостроения. Очень хорошо подходит для тех.процессов, включающих порошковую покраску.
● 93% Ar, 5% СО2, 2% O2. Эта трехсоставная смесь приготовлена в основном для тонких сталей. Низкие уровни СО2 и О2 сильно снижают риск прожога и, как следствие, возникновения дефектов в виде пор и свищей. Обеспечивает устойчивость горения электрической дуги, что, в свою очередь, снижает уровень брызг, позволяет экономить проволочный материал и снижает затраты на мех.обработку.
Большая скорость выполнения проходов и небольшое тепловложение позволяют уменьшить температурные деформации.
● 82% Ar и 18%СО2. Здесь достигается хорошая глубина провара, особенно, если сталкиваться приходится с толстолистовым материалом. Позволяет избежать дефектов в шве. Достаточно высокое содержание СО2 делает возможным более продуктивную сварку стали, запачканной маслом, влагой, коррозией, снижая таким образом себестоимость изготовления. Самая популярная смесь, применяемая при сварке полуавтоматом. В сравнении с чистым СО2 позволяет увеличить скорость до 10% и достичь экономии сварочной проволоки до 15%.
● 86% Ar, 12% СО2, 2% О2. Предназначена для достижения maх производительности. Позволяет варить в большом диапазоне по току и напряжению, облегчая сварщику их выбор и достижение хороших результатов без дефектов. Отлично подходит как для полуавтоматической, так и для автоматической и роботизированной сварки. Обеспечивает низкий уровень образования брызг наряду с хорошей глубиной провара. Позволяет получить гладкие сварные швы, сократить расход проволоки. Обеспечивает плавный переход между основным металлом и швом, что позволяет избежать возникновения концентраторов напряжения. Высокая скорость сварки приводит к снижению термических деформаций в конструкциях.
● 60% Ar, 10% СО2, 30% Не. Данная смесь, содержащая гелий, была специально разработана для роботизированной сварки, где может быть полностью использован ее потенциал в части скорости. Значительно возрастает производительность, а также заметно снижаются температурные коробления.
Высокая устойчивость дуги наряду с увеличением теплопроводности, благодаря наличию Не создает жидкую, долго остывающую ванну, что позволяет избежать таких дефектов, как поры при остывании.
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Какой газ используется для сварки полуавтоматом
Сварочный полуавтомат дает возможность увеличить продуктивность и качество работы. Оборудование не предполагает использования традиционных электродов. Вместо них применяется специальная присадочная проволока, которая намотана на катушку. Преимущество такого подхода заключается в том, что специалисту не приходится разрывать шов, чтобы сменить стержень. Операция выполняется непрерывно, сохраняется целостность шва и экономится время.
Помимо этого, оборудование позволяет сваривать заготовки разной толщины: от 0,2 мм до нескольких сантиметров. При этом сварщик может работать с заготовками из разных материалов или их сплавов. Для того, чтобы воспользоваться всеми перечисленными преимуществами требуется газ для сварки полуавтоматом. Он будет препятствовать проникновению в сварочную ванну атмосферной влаги и содержащихся в воздухе других элементов.
- Какой газ нужен для сварки полуавтоматом
- Сварочная смесь для полуавтомата
- Технология выполнения работ
- Особенности сваривания под газом
- Основные преимущества сварки полуавтоматом с газом
Какой газ нужен для сварки полуавтоматом
Технологическим регламентом при работе полуавтоматической сваркой предусматривается применения инертного или активного газа в качестве флюса. Активный вступает в химическую реакцию во время сварки и меняет физико-химические показатели сварного шва. Защитный газ не реагирует, но защищает рабочую среду от окислительных процессов. Такой способ особенно актуален в случаях сваривания заготовок из алюминиевого сплава, которые быстро поддаются окислению.
Наиболее распространенными газами из числа инертных являются гелий и аргон. Активная группа состоит из распространенных элементов: углекислый газ (СО2), кислород, азот. Самые популярные соединения:
- смесь аргона с углекислотой. Инертно-активная среда минимизирует количество брызг;
- состав из гелия и аргона. Инертная среда, позволяющая повысить температуру дуги;
- аргоно-кислородная газовая среда. Инертно активное соединение, которое используется при работе с легированной и низколегированной сталью;
- углекислый газ в сочетании с кислородом. Активная среда, применяемая для повышения производительности полуавтоматического оборудования.
Сварочная смесь для полуавтомата
Выбирая смесь для полуавтомата, специалист учитывает такие критерии: тип материала заготовок, диаметр используемой проволоки, оптимальная толщина сварного шва. На практике для выбора смеси достаточно сопоставить приведенные в специальных таблицах данные. Здесь уже подобраны оптимальные варианты составов для работы с конкретными материалами с учетом технологических особенностей процесса.
Опытный сварщик учитывает и сопутствующие эффекты от использования той или другой газовой смеси. К примеру, применение углекислого газа дает возможность снизить разбрызгиваемость. Поэтому их часто выбирают для формирования потолочных швов.
Технология выполнения работ
Принципиального отличия от дуговой сварки нет, поскольку в основу положены те же физико-химические процессы. Между электродом и рабочей поверхностью создается разница потенциалов, что дает возможность сформировать электрическую дугу. Она накаляется до температуры, которой достаточно для плавления металлов. Расплавленная присадочная проволока связывается с телом заготовки на атомарном уровне. После остывания образуется цельный конструкционный элемент. Прочность соединения присадки и тела заготовки составляет примерно 90% от показателя основного конструкционного материала.
Нужно учитывать и особенности, которые характерны для полуавтоматической сварки:
- Присадочная проволока подается в рабочую зону непрерывно через специальный проводящий электричество мундштук. При этом расход материала можно отрегулировать вручную, придерживая или отпуская кнопку подачи.
- Вместо привычного флюса в твердой форме, от плавления которого образуется газовое облако, тут подается уже готовая газовая смесь или же чистая среда. Газ поступает все время: как при активной, так и потухшей электрической дуге.
Благодаря такому решению уменьшается количество брызг, показатели работы дуги более стабильны, повышается производительность труда сварщика и, соответственно, снижается трудоемкость сварочных процессов.
Особенности сваривания под газом
Техника сваривания полуавтоматическими устройствами практически ничем не отличается от приемов, которые применяются в традиционной электродуговой сварке. При помощи полуавтоматов можно формировать горизонтальные или вертикальные швы, делать «прихватку», делать стыки герметичными, делать сопряжения встык или внахлест.
Способы формирования остаются точно такими же, как и при использовании классических аппаратов ММА-серии. Более того, по общей схеме определяются оптимальная сила тока и режима сварки — на основе данных о толщине стыка и диаметре электрода.
Единственная особенность, которую отмечают практически все пользователи — простота соединения тонких листов металла. Поэтому чаще всего полуавтоматы используются в кузовном ремонте и при сваривании металлических конструкций из тонких листов.
Основные преимущества сварки полуавтоматом с газом
- Высокая температура воздействует на ограниченный участок заготовки. Поэтому металлы не меняют свих физических свойств.
- Нет дыма в рабочей зоне. Это существенно облегчает визуальный контроль над сварочным процессом.
- Универсальность. Технология отлично подходит для соединения разных металлов: от алюминия и титана до высоколегированной конструкционной стали.
- Нет ограничений относительно пространственного расположения заготовки. Достаточно отрегулировать мощность горелки для того, чтобы положить наклонный или потолочный шов.
- Отсутствуют ограничения по минимальной толщине. Технология дает возможность работать с листами толщиной от 0,2 мм. Максимальная толщина заготовки зависит от навыков специалиста.
- Не требуется постоянно зачищать швы даже при многослойной сварке. Газовый флюс улетучивается сразу после прекращения подачи смеси.
- Высокая производительность установки.
Какой газ используется для сварки полуавтоматом