Влияние никеля на свойства стали
Влияние химического состава на механические свойства стали
Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.
Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.
Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.
Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.
Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.
Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.
Хром (Cr) повышает прочность, закаливаемость и жаростойкость, режущие свойства и стойкость на истирание, но снижает вязкость и теплопроводность стали. Содержание большого количества хрома (в обычных сортах стали доходит до 2%, а в специальных — до 25%) делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.
Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.
Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.
Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.
Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.
Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.
Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.
Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.
В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).
Рис.1 — Испытание арматурного стержня для определения химического состава стали.
Рис.2 — Испытания арматурной стали на растяжение.
Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:
где υ – выборочный коэффициент вариации,
tα,k – коэффициент Стьюдента,
α=1-P – уровень значимости (Р — доверительная вероятность),
k = n-1 – число степеней свободы,
ΔМ – максимальная относительная ошибка (допуск) при оценке математического ожидания в долях математического ожидания (ΔМ = γ*δМ, где γ — генеральный коэффициент вариации, δМ – максимальная ошибка при оценке математического ожидания в долях среднеквадратического отклонения).
Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.
По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.
Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.
Уравнение множественной регрессии может быть представлено в виде:
Y = f (β, X) + ε,
где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.
Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (
Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter
Влияние легирующих элементов на сталь – как делают идеальные сплавы?
Влияние легирующих элементов на свойства металлургических сплавов изучено по-настоящему хорошо. Благодаря этому введение в сталь различных добавок позволяет получать композиции с уникальными технологическими характеристиками.
1 Группы легирующих элементов и их обозначение
Компоненты, используемые для улучшения свойств сталей, разбивают по степени применимости на три подвида:
- Никель – обозначение в готовом сплаве – Н, молибден – М;
- Марганец – Г, хром – Х, кремний – С, бор – Р;
- Ванадий – Ф, ниобий – Б, титан – Т, цирконий – Ц, вольфрам – В.
К третьему подвиду относят и остальные элементы для легирования – азот (обозначение – А), медь (Д), алюминий (Ю), кобальт (К), бор (Р), фосфор (П), углерод (У), селен (Е). Отметим, что подобное деление обусловлено в основном экономическими соображениями, а не сугубо физическими.
По характеру воздействия добавок на модификации (полиморфные), наблюдаемые в сталях, все легирующие элементы делят на два типа. К первому относят компоненты, которые при любых температурах способны стабилизировать аустенит (в основном это марганец и никель). Вторая группа включает в себя элементы, которые при определенном своем содержании могут поддерживать ферритную структуру сплава (алюминий, молибден, хром, кремний, вольфрам и другие).
По механизму влияния на свойства и структуру сталей добавки причисляют к одному из трех типов:
- Легирующие элементы, способные создавать карбиды углерода при реакции с последним (бор, молибден, титан, цирконий).
- Добавки, обеспечивающие полиморфные превращения (альфа-железо в гамма-железо).
- Химэлементы, при использовании которых получаются интерметаллические соединения (ниобий, вольфрам).
Правильное легирование сталей подразумевает введение в их состав тех или иных добавок в строго рассчитанных количествах. При этом оптимальных результатов металлурги достигают в случае, когда «насыщение» сплавов производится комплексно.
2 Какие свойства сплавов позволяют улучшить легирующие добавки?
Легирование дает возможность снизить деформируемость изделий, производимых из различных марок стали, снизить порог хладоломкости сплавов, свести к минимуму риск появления в них трещин, значительно уменьшить скорость закалки и при этом повысить:
- прокаливаемость;
- ударную вязкость;
- текучесть;
- сужение (относительное);
- коррозионную стойкость.
Все легирующие добавки (кроме кобальта), повышают прокаливаемость сталей и уменьшают (зачастую весьма существенно) критическую скорость закалки. Достигается это за счет увеличения устойчивости аустенита в сплавах.
Образующие карбиды элементы способны замещать атомы железа в цементите. За счет этого карбидные фазы становятся более устойчивыми. При выделении карбидов из твердых растворов наблюдается явление дисперсионного упрочнения сталей. Другими словами – сплав получает дополнительную твердость.
Также карбидообразующие добавки делают процесс коагуляции дисперсных частиц в сталях более медленным и препятствуют (при нагреве) росту аустенитных зерен. Благодаря таким легирующим компонентам сплавы становятся намного прочнее.
Аустенитную структуру улучшают любыми легирующими добавками, кроме углерода и азота.
Насыщенный добавками аустенит получает высокий показатель теплового расширения, становится парамагнитным, у него снижается предел текучести. Композиции с подобными свойствами незаменимы для выпуска немагнитных и нержавеющих сталей. Аустенитные сплавы, кроме того, прекрасно упрочняются при грамотно проведенной холодной деформации.
Стали, имеющие ферритную структуру, при легировании также обретают добавочную прочность. Максимальное влияние на этот показатель оказывает хром и марганец. Обратите внимание! Прочностные характеристики сплавов увеличиваются при снижении геометрических параметров ферритных зерен.
3 Влияние конкретных химических элементов на свойства стали – коротко об основном
Давайте посмотрим, какие именно характеристики готовых сплавов способны улучшить те или иные добавки:
- Вольфрам создает карбиды, которые повышают красностойкость и показатели твердости стали. Также он облегчает процесс отпуска готовой продукции, снижая хрупкость стали.
- Кобальт увеличивает магнитный потенциал металла, его ударостойкость и жаропрочность.
- Никель повышает прокаливаемость, прочность, коррозионную стойкость, пластичность сталей и делает их более ударопрочными, снижает предел хладноломкости.
- Титан придает сплавам высокую плотность и прочностные свойства, делает металл коррозионностойким. Стали с такой добавкой хорошо обрабатываются специальным инструментом на металлорежущих агрегатах.
- Цирконий вводят в сплавы, когда необходимо получить в них зерна со строго определенными размерами.
- Марганец делает металл устойчивым к износу, повышает его твердость, удароустойчивость. При этом пластичные свойства сталей остаются на прежнем уровне, что важно. Заметим – марганца нужно вводить не менее 1 %. Тогда влияние этого элемента на эксплуатационные показатели сплава будет ощутимым.
- Медь делает металлургические композиции стойкими к ржавлению.
- Ванадий измельчает зерно сплава, делает его прочным и очень твердым.
- Ниобий вводят для снижения явлений коррозии в сварных изделиях, а также для повышения кислотостойкой стальных конструкций.
- Алюминий увеличивает окалийность и жаропрочность.
- Неодим и церий используют для сталей с заданной заранее величиной зерна, сплавов с малым содержанием серы. Эти элементы также снижают пористость металла.
- Молибден повышает прочность сплавов на растяжение, их упругость и красностойкость. Кроме того, эта легирующая добавка делает стали стойкими к окислению при высоких температурах.
Больше влияние на характеристики сталей оказывает кремний. Он повышает окалийность и упругость металла. Если кремния содержится около 1,5 %, сталь становится вязкой и при этом очень прочной. А при его добавке более 1,5 % сплавы обретают свойства магнитопроницаемости и электросопротивления.
Грамотно выполненное легирование сталей обеспечивает их особыми свойствами. И современные металлургические предприятия активно используют этот процесс для выпуска широкой номенклатуры сплавов с высокими технологическими характеристиками.
Влияние никеля на физико-химические свойства стали
Влияние никеля на физико-химические свойства стали
- Влияние никеля на физико-химические свойства сталекникеля имеет гораздо меньшее химическое сродство к кислороду, чем к железу, поэтому никелевая сталь менее подвержена коррозии, чем обычная углеродистая сталь. Однако никелевая сталь в этом отношении значительно уступает более дешевой хромистой нержавеющей стали. Поэтому чистая никелевая сталь (без других легирующих элементов) как сталь со специальными химическими свойствами (нержавеющая, кислотостойкая и др.) не используется.
Никель оказывает очень сильное влияние на физические свойства iron. In в радиотехнике, телефонии, прецизионном приборостроении используются различные железоникелевые сплавы с особыми физическими свойствами. Фазовая диаграмма Fe-Ni показывает, что при охлаждении сплава, содержащего 2,5% или более
Ni, точка перехода FET — » — Fea снижается до комнатной температуры. Людмила Фирмаль
Эта характеристика никеля используется в производстве аустенитных немагнитных никелевых сталей, в том числе 23-25° / Ni и 0,2
0.3%C. To увеличьте прочность и увеличьте коррозионную устойчивость, немагнитную сталь никеля была введена такая сталь под фирменным наименованием 2
3% кр Х24С2, широко использована в индустрии. Термическая обработка немагнитных никелевых сталей заключается в растворении существующих карбидов и закалке при 1000-1050°С для получения однородной аустенитной структуры.
После гасить, прочность на растяжение стали H24X2 около 50 kg / mm2, удлиненность 40%, прочность удара превышает 20 kg / cm2, проницаемость близко к 1.При холодной деформации (закалке) эта сталь при закалке частично затвердевает, что делает ее слабомагнитной. Большой дефицит никеля в немагнитной стали-его высокая стоимость и влияние никеля на физико-химические свойства стали 129 Из-за плохой обрабатываемости сталь H24X2 используется только в особых случаях.
- Под влиянием никеля резко изменяется электрическая и теплопроводность стали. Например, если электрическое сопротивление чистого железа при 20°составляет около 0,1 Ом/ мм2 / м, а теплопроводность при 0-100°составляет около 0,2 кал / см-сек, то никелевая сталь при 36% Ni в этих условиях имеет электрическое сопротивление около 1 ом/ мм2 / м, то есть примерно в 10 раз, теплопроводность составляет около 0,02 / С * С ° С, то есть железо(рис.57). 0J6 0.МЕ Но… iojo 0ftS Я | Один Один Один / / / / / / 70 Р Один ^-•• Двадцать 60 80100 go 40 60 SO 100 МРЖО. В. Диаграмма 57.
Влияние никеля на тепло 58.Влияние никеля на содержание воды в железе; коэффициент теплового расширения сплава Fe-N1 При введении никеля коэффициент теплового расширения железа существенно изменяется (рис. 58). Коэффициент теплового расширения сплавов, содержащих 48%Ni (платины), равен этому свойству платины и glass. It применяется в виде проводов для изготовления ламп накаливания, для пайки к стеклу, например, оправ для линз.- Сплавы 36% Ni и 0,25% C geldinker характеризуются очень низким коэффициентом теплового расширения.
Такой сплав называется «Имбер» и не изменился. Людмила Фирмаль
Инверторы широко используются при изготовлении эталонов длины, геодезических и других прецизионных приборов. Биметаллические пластинчатые элементы пускового механизма, такие как автоматический термовыключатель, выполнены из прутков. Очень низкий модуль упругости-130 никелевая сталь Коэффициент теплового расширения, который практически равен нулю, Инвар находится только в температурном диапазоне примерно от минус 100 до плюс 100°.При дальнейшем нагревании этот сплав расширяется так же, как и простая углеродистая сталь (рис.59).
Благодаря специальной термообработке и упрочнению, атомная кристаллическая решетка Инвара сильно искажается, поэтому коэффициент теплового расширения равен нулю. Но со сплавом 2.0 О Один—- Один т. — В г Это очень весело. / / / В ПОЛНЫЙ °O 50 W0 / 50 BOO 250 300 350 Температура, С Пиуц. 59.Тепловое расширение сплавов Inzar при различных температурах Решетка становится неустойчивой, и такой метод обработки Inbar практически не применяется. На рисунке 60 показано влияние никеля на температурный коэффициент модуля упругости железоникелевого сплава. При 29% Ni (A) и 45% Ni (B) температурный коэффициент модуля упругости сплава равен нулю.
Такие сплавы используются при изготовлении различных деталей, модуль упругости которых не зависит от температуры. Однако очень трудно получить сплав, содержащий ровно 29 или 45% Ni, поэтому вместо этих сплавов используются сплавы никель-хром-никель (C 0,3-0,4%, Cr 7-8%, Ni 36-38%). used. In этот сплав, модуль упругости которого находится в диапазоне от плюс 100°до минус 80°, также не зависит от температуры, кроме того, высокий предел текучести»Erin bar«делает его широко используемым в производстве пружин, настраивающих циферблатов и мембран для прецизионных приборов. Посмотрите на волосы и другие продукты.
Никель очень сильно влияет на магнитные свойства железа. Железоникелевые сплавы, содержащие 50-80% Ni, в слабом магнитном поле имеют магнитную проницаемость от десятков до сотен. Не раз. е-железная проницаемость, очень низкая коэрцитивная сила-от 10 минут для элстеда 1 до тысячи минут. Такой никель-железный сплав с общим названием пермаллоид широко используется в низковольтной электротехнике. Первые пермаллои, используемые в промышленности, включали 78,5% Ni и 21,5% Fe. Этот сплав обладает высокой проницаемостью. Ядро такого пермаллоя намагничивается и размагничивается путем поворота геомагнитного поля в поле. Для Р ВИ Я // Один // ’ 10-го числа. Н1,°/. 60, 70. Диаграмма 60.
Влияние никеля на температурный коэффициент модуля упругости стали Для улучшения магнитных свойств пермара отжигают по следующим режимам: ее нагревают до 1100-1150°С и выдерживают при этой температуре до удержания структуры однородного твердого раствора в течение 3-4 часов, а затем охлаждают со скоростью 50-60°С / ч до 550-600°с, а далее в течение 3-4 часов. air. It предотвращает ускоренное охлаждение при низких температурах, препятствует осаждению различных соединений(карбидов, нитридов и др.) из твердых растворов, а также ухудшает магнитные свойства дисперсионного упрочнения и сплавов.
После отжига изделия из пермаллоя не должны подвергаться холодной обработке. Это связано с тем, что даже самое незначительное упрочнение резко снижает проницаемость этого материала. Пермаллой 78%используется при изготовлении сердечника телефонного трансформатора, чувствительных реле и др. Сплав 50% Fe + 50° / 0 Ni вызвал hypernic имеет значительно более низкую проницаемость чем permalloy, сталь никеля 132 Низкая коэрцитивность. Hypernick используется для маломощных трансформаторов, дросселей и др.
Магнитные свойства чистых железоникелевых пермаллоев могут быть значительно улучшены путем введения дополнительных легирующих элементов, таких как молибден, хром и медь. Например, сплав «мопермалой», названный 79°/ o Ni, 4-5% Mo, 16-17% Mo, обладает очень высокой начальной проницаемостью и высоким электрическим сопротивлением, что делает его 1 из лучших магнитомягких материалов. Mopel Malloy используется в трансформаторах для преобразования слабых токов звуковых и несущих частот.
Влияние химических элементов на свойства стали.
Каталог
Наш Instagram
Влияние хим. элементов на свойства стали.
Условные обозначения химических элементов:
хром ( Cr ) — Х никель ( Ni ) — Н молибден ( Mo ) — М титан ( Ti ) — Т медь ( Cu ) — Д ванадий ( V ) — Ф вольфрам ( W ) — В | азот ( N ) — А алюминий ( Аl ) — Ю бериллий ( Be ) — Л бор ( B ) — Р висмут ( Вi ) — Ви галлий ( Ga ) — Гл | иридий ( Ir ) — И кадмий ( Cd ) — Кд кобальт ( Co ) — К кремний ( Si ) — C магний ( Mg ) — Ш марганец ( Mn ) — Г | свинец ( Pb ) — АС ниобий ( Nb) — Б селен ( Se ) — Е углерод ( C ) — У фосфор ( P ) — П цирконий ( Zr ) — Ц |
ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА
Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.
Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)
Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.
Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).
Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.
ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ
Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.
Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.
Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.
Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.
Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.
Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.
Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.
Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.
Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.
Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.
Алюминий (Ю) — повышает жаростойкость и окалиностойкость.
Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.
Церий — повышает прочность и особенно пластичность.
Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.
Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.
Влияние химического состава сталей на их структурно-фазовое состояние и коррозионную стойкость
При изготовлении оборудования для переработки нефти и газа весьма широко используются стали, для которые основными легирующими компонентами являются хром и никель. Композиция на основе железа, содержащая 18% хрома и 10% никеля, является базовой. Около 70% выплавляемых в России и за рубежом коррозионно-стойких сталей приходится на группу Х18Н10. Дополнительное легирование этой композиции позволяет придать стали дополнительные свойства.
Хром и никель оказывают на фазовое состояние стали противоположное влияние. Хром, являясь ферритообразующим элементом, стабилизирует у-фазу. Никель, аустенитообразующий эле мент, соответственно стабилизирует у-фазу. Остальные легирующие элементы, вводимые в металл для придания ему повышен ной коррозионной стойкости и хороших механических и технологических свойств, также по-разному могут влиять на фазовое состояние стали. Молибден, титан, ниобий, кремний являются ферритообразующими, тогда как углерод, марганец, азот стабилизируют аустенит. Для определения фазового состоянии хромоникелевых сталей часто пользуются диаграммой Шеффлера (рис. 5.16), в которой учитывается суммарное содержание феррито- и аустенитообразующих элементов. Из диаграммы видно, что наиболее распространенная коррозионно-стойкая сталь 12Х18Н10Т (08Х18Н10Т) имеет в основном аустенитную структуру с содержанием ферритной фазы около 5(6)%. Именно аустенит придает этой стали высокую пластичность и вязкость, выгодно отличающие ее от хромистой стали с 18% хрома. Стали аустенитного класса, как было показано ранее, проявляют повышенную устойчивость к развитию коррозионного разрушения за счет повышенной термодинамической устойчивости объемно-центрированной кристаллической решетки этой фазы. Высокая коррозионная стойкость сталей этого класса определяется, с одной стороны, легкой пассивируемостью, которую обеспечивает легирование хромом, а с другой — высокой термодинамической устойчивостью аустенита, образующегося благодаря легированию стали никелем. Структура, обеспечивающая высокие коррозионную стойкость и вязкость стали (аустенит с 5—6% феррита), образуется у сталей рассматриваемого класса в результате закалки или нормализации с температуры 1000—1100°С (обычный для этих сталей вид термической обработки). В случаях, когда в процессе эксплуатации они долго пребывают в температурном интервале 600—930°С, возможно выделение интерметаллических соединений (у-фазы), которое сопровождается сильным охрупчиванием стали и появлением трещин при охлаждении аппаратуры с рабочих температур в период остановок оборудования. Нагрев до температуры 1000—1100°С приводит к растворению у-фазы и восстановлению первоначальных свойств металла.
При нагреве до температуры 400—600°С происходит выделение карбидов хрома, преимущественно по границам зерен. Это, как было показано ранее, приводит к связыванию хрома в карбиды и обеднению хромом границ зерен. Следствием таких процессов является развитие у стали склонности к MKK. При нагреве стали до температуры 900—950°С (стабилизирующий отжиг) диффузия хрома к границе зерна восстанавливает необходимое для надежной пассивации количество хрома на границах зерен и ликвидирует возникшую склонность к MKK. Легирование стали элементами, образующими более стабильные карбиды, чем хром (титаном, ниобием, танталом), а также уменьшение содержания углерода, снижает вероятность возникновения склонности хромо-никелевых сталей к MKK при нагреве в опасном интервале температур. В случаях, когда содержание углерода в стали типа 18-10 не достигает 0,03%, стали свойственна высокая устойчивость против MKK даже без введения в нее дополнительного количества активных карбидообразующих элементов.
Молибден вводится в стали типа 18-10 в количестве 2—3%. Он является ферритообразующим элементом. Поэтому для сохранения аустенитного состояния введение молибдена требует повышение содержания никеля в стали. Молибден входит в состав пассивирующих слоев и способствует повышению их защитных свойств. Поэтому стали, легированные молибденом, проявляют более высокую коррозионную стойкость, чем стали без молибдена. По этой же причине легированные молибденом стали имеют больший инкубационный период при развитии питтинговой коррозии. В то же время легирование молибденом расширяет температурный интервал образования у-фазы, существенно ускоряя этот процесс. Это увеличивает опасность охрупчивания сталей, легированных молибденом, при эксплуатации их в интервале температур 650—950°С. Существует мнение, что легирование молибденом сопровождается изменением дислокационной структуры стали с ячеистой, с неупорядоченным расположением дислокаций, на компланарную, с расположением дислокаций по плоскостям. Стали с компланарной дислокационной структурой проявляют, как правило, пониженное сопротивление развитию трещины. Поэтому влияние молибдена на сопротивление питтинговой коррозии и хлоридному коррозионному растрескиванию неоднозначно: с одной стороны, существенно увеличивается инкубационный период разрушения, а с другой — снижается сопротивление его развитию.
Легирование кремнием, ферритообразующим элементом, несколько снижает вязкость стали и соответственно сопротивление коррозионному растрескиванию. Для сохранения исходной аус-тенитной структуры введение кремния требует повышенного содержания аустенитообразующих элементов (углерода, никеля). Положительная роль кремния связана с повышение защитных свойств поверхностных слоев, возникающих как при электрохимической коррозии, так и, особенно, при коррозии, протекающей по неэлектрохимическому механизму при высоких температурах.
Введение в сталь большего количества хрома (до 25%) и необходимого для сохранения аустенитного фазового состояния никеля (13—18%) обеспечивают еще более легкое пассивирование стали, а также еще большую устойчивость к высокотемпературным видам коррозии при сохранении таких механических свойств, как высокая вязкость и пластичность. Введение в сплав с высоким содержанием хрома и никеля молибдена и меди существенно повышает его стойкость в неорганических кислотах, особенно в серной.
Легирование стали марганцем и азотом способствует стабилизации аустенита и в ряде случаев позволяет сэкономить дефицитный в России дорогостоящий никель без ущерба для коррозионной стойкости сталей. Для изготовления оборудования перерабатывающих заводов допускается использование сталей, содержащих до 8% марганца. Чисто хромомарганцевые стали существенно уступают хромоникелевым по стойкости к питтинговой коррозии и МКК. Они более склонны к развитию 475°-й хрупкости. При сварке этих сталей в зоне термического влияния сварного соединения образуется о-фаза, в результате чего вязкость сварного шва падает. Введение в хромомарганцевую сталь никеля (до 4%) улучшает коррозионные и механические свойства этих сталей. Азот — сильный аустенитообразователь. Он позволяет существенно снизить содержание никеля в стали. Однако введение его в сталь способствует выделению второй фазы — нитридов. Это снижает гомогенность стали и делает ее менее устойчивой к коррозии.
Другой путь экономии никеля связан с использованием хромоникелевых двухфазных, феррито-аустенитных, сталей. Для изготовления нефтегазовой аппаратуры рекомендованы стали, содержащие (в %) 20—25 хрома, 5—8 никеля и до 3 молибдена. При таком составе соотношение ферритной и аустенитной фаз могут сильно различаться. Как правило, используют стали с содержанием ферритной фазы от 40 до 70%. В большинстве сред, характерных для переработки нефти и газа, стали этого класса не уступают по стойкости электрохимической коррозии сталям аустенитного класса. Считается, что по стойкости против питтинговой коррозии и хлоридного коррозионного растрескивания они даже несколько превосходят аустенитные стали, причем стойкость эта повышается по мере увеличения содержания в них ферритной фазы. Стойкость против MKK достигается путем легирования сталей титаном и ниобием и ограничения содержания углерода. По стойкости к MKK и межкристаллитному коррозионному растрескиванию феррито-аустенитные стали также не только не уступают, но превосходят аустенитные. Это связывают с тем, что, во-первых, для двухфазных сталей характерна мелкозернистая структура, а следовательно, большая протяженность границ зерен, обуславливающая меньшую концентрацию карбидных выделений. Во-вторых, при образовании карбидов типа Ме23С6 на границе аустенита с ферритом из-за высокого содержания хрома в ферритной фазе и повышенной скорости диффузии легирующих элементов в объемно-центрированной решетке аустенита облегчается выравнивание химического состава в приграничных областях, и концентрация хрома не опускается ниже допустимого уровня. По прочности аустенито-ферритные стали существенно превосходят стали аустенитного класса, что позволяет понизить металлоемкость изготавливаемых из них конструкций. Это, наряду с пониженным содержанием в них никеля, дает возможность рассматривать их как заменителей аустенитных сталей, применение которых позволяет экономить никель.
Помимо указанных коррозионно-стойких материалов на нефте- и газоперерабатывающих заводах применяют аппараты и элементы металлоконструкций, изготовленные из биметалла. В биметалле основным слоем служит углеродистая, или низколегированная, сталь, а плакирующим — нержавеющая (хромистая или хромоникелевая). Биметалл обладает рядом преимуществ по сравнению с коррозионно-стойким монометаллом. Благодаря тому, что металл основы имеет обычно более высокую прочность, чем плакирующий слой, биметаллическая металлоконструкция существенно менее металлоемка. Применение биметалла позволяет уменьшить расход дорогостоящих высоколегированных сталей. Биметалл с плакирующим слоем из стали типа 18-10 лучше противостоит питтинговой коррозии и хлоридному коррозионному растрескиванию, чем сталь типа 18-10: зародившийся питтинг не может преодолеть линию сплавления. В то же время применение биметалла требует определенной осторожности. He рекомендуется использовать биметалл для работы в средах, содержащих сероводород: продиффундировавший сквозь плакирующий слой водород способен скапливаться под плакирующим слоем и отрывать его от основного металла. Кроме того, в случае, когда плакировка — сталь типа 18-10, при сварке биметалла в зоне сплавления может образоваться мартенсит, по которому легко распространяется коррозионная трещина в наводороженном металле.
Помимо сталей (сплавов на основе железа) для изготовления элементов металлоконструкций в ряде случаев используются сплавы на основе меди (латуни) и никеля (монель-металл). Латуни хорошо противостоят питтинговой коррозии в нейтральных и слабокислых средах. Их используют для изготовления трубных пучков холодильников, предназначенных главным образом для охлаждения головного погона атмосферных колонн установок АВТ. Применение защелачивания и ингибирования головных погонов позволяет обходиться для этих целей углеродистыми сталями. Монель-металл (сплав никеля с молибденом) практически не подвергается питтинговой коррозии и хлоридному коррозионному растрескиванию даже в кислых средах, и рекомендовался для плакикрования верхней части атмосферных колонн на установках первичной переработки нефти, работавших без блока (установки) ЭЛОУ. Повсеместное введение подобных блоков и установок избавило от необходимости применения этого дорогостоящего материала. Применение латуней и монель-металла в наше время весьма ограничено и не считается перспективным. Поэтому в настоящем пособии особенности влияния их химического состава и структуры на коррозионное поведение не рассматривается.