E-polirovka.ru

0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое класс прочности стали?

Класс прочности

3.3. Класс прочности — установленное стандартом нормируемое значение физического или условного предела текучести стали.

Смотри также родственные термины:

3.15 класс прочности труб: Прочность металла труб, оцениваемая временным сопротивлением σв и обозначаемая символами от К34 до К60, что соответствует нормативным значениям σв, (кгс/мм 2 ).

3.15 класс прочности труб: Прочность металла труб, оцениваемая временным сопротивлением sв и обозначаемая символами от К34 до К60, что соответствует нормативным значениям sв (кгс/мм 2 ).

3.1.16 класс прочности труб: Прочность металла труб, оцениваемая временным сопротивлением sв и обозначаемая символами от К34 до К60, что соответствует нормативным значениям sв (кгс/мм 2 ).

3.1 класс прочности трубы: Обозначение уровня прочности трубы, состоящее из аббревиатуры КП и значения минимального предела текучести (Н/мм 2 ) для данного класса прочности.

4.3 класс прочности трубы: Значение уровня прочности трубы.

Класс прочности цемента

Условное обозначение одного из значений параметрического ряда по прочности в максимальные сроки, установленные нормативным документом

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

  • класс промышленной чистоты
  • класс прочности труб

Смотреть что такое «Класс прочности» в других словарях:

Класс прочности — – арм. установленное стандартом нормируемое значение предела текучести, Н/мм2. [СТО АСЧМ 7 93] Класс прочности стали арматурной – установленное стандартом нормируемое значение физического или условного предела текучести стали. [ГОСТ 10884… … Энциклопедия терминов, определений и пояснений строительных материалов

класс прочности — Условное обозначение, характеризующее временное сопротивление разрыву и предел текучести материала крепёжных деталей. [http://sl3d.ru/o slovare.html] Тематики машиностроение в целом … Справочник технического переводчика

Класс прочности цемента — – условное обозначение одного из значений параметрического ряда по прочности цемента (МПа) в максимальные сроки, установленные нормативным документом. [ГОСТ 30515 2013] Класс прочности цемента – класс прочности на сжатие. [EN 197 1]… … Энциклопедия терминов, определений и пояснений строительных материалов

Класс прочности цемента — Условное обозначение одного из значений параметрического ряда по прочности в максимальные сроки, установленные нормативным документом Источник: ГОСТ 30515 97: Цементы. Общие технические условия оригинал документа … Словарь-справочник терминов нормативно-технической документации

класс прочности трубы — 3.1 класс прочности трубы: Обозначение уровня прочности трубы, состоящее из аббревиатуры КП и значения минимального предела текучести (Н/мм2) для данного класса прочности. Источник: ГОСТ Р 54157 2010: Трубы стальные профильные для… … Словарь-справочник терминов нормативно-технической документации

класс прочности труб — 3.15 класс прочности труб: Прочность металла труб, оцениваемая временным сопротивлением σв и обозначаемая символами от К34 до К60, что соответствует нормативным значениям σв, (кгс/мм2). Источник … Словарь-справочник терминов нормативно-технической документации

класс прочности цемента — условное обозначение одного из значений параметрического ряда по прочности в максимальные сроки, установленные нормативным документом. (Смотри: ГОСТ 30515 97. Цементы. Общие технические условия.) Источник: Дом: Строительная терминология , М.: Бук … Строительный словарь

класс прочности стали арматурной — установленное стандартом нормируемое значение физического или условного предела текучести стали. (Смотри: ГОСТ 10884 94. Сталь арматурная термомеханически упрочненная для железобетонных конструкций. Технические условия.) Источник: Дом:… … Строительный словарь

промежуточный класс прочности — 4.20 промежуточный класс прочности: Класс прочности между классами прочности, указанными в настоящем стандарте. Источник: ГОСТ Р 53580 2009: Трубы стальные для промысловых трубопроводов. Технические условия … Словарь-справочник терминов нормативно-технической документации

класс — 3.7 класс : Совокупность подобных предметов, построенная в соответствии с определенными правилами. Источник: ГОСТ Р 51079 2006: Технические средства реабилитации людей с ограничениями жизнедеятельности. Классификация … Словарь-справочник терминов нормативно-технической документации

Класс прочности и марки сталей — Болты. Винты. Шпильки

Предел прочности (Временное сопротивление). Прочность металлов | Справочник на сайте ИЦ Модификатор

Предел прочности

— это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин
временное сопротивление
, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».

— это сопротивление материала деформации и разрушению, одно из основных
механических свойств
. Другими словами, прочность — это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении

относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности

— это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см2), а также указывается в мегапаскалях (МПа).

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа)

определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit — предел ограниченной длительной прочности на заданный срок службы. [1]

Физику прочности

основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения
P
для данного материала зависит только от площади поперечного сечения
F
. Так появилась новая физическая величина — напряжение
σ=P
/
F
— и физическая постоянная материала: напряжение разрушения [4].

Физика разрушения как фундаментальная наука о прочности металлов

возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений.

Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла.

Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Читать еще:  Ножи из дамасской стали плюсы и минусы

Большое влияние на прочность материала

оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе — модифицирование сплава.

Учебный фильм о прочности металлов (СССР, год выпуска:

Предел прочности металла

Предел прочности меди

. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия

. Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σВ=8 кгс/мм2 [8]. С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм2.

Виды сталей и особенности их маркировки

Различные области применения сталей требуют наличие у нее строго определенных свойств – физических, химических. В одном случае требуется максимально высокая износоустойчивость, в других – повышенная устойчивость против коррозии, в третьих внимание уделяется магнитным свойствам.

Видов стали много. Основная масса выплавляемого металла идет в производство конструкционной стали, в которую входят такие виды:

  • Строительная. Низколегированная сталь с хорошей свариваемостью. Основное назначение – производство строительных конструкций.
  • Пружинная. Имеют высокую упругость, усталостную прочность, сопротивление разрушению. Идет на производство пружин, рессор.
  • Подшипниковая. Основной критерий – высокая износоустойчивость, прочность, низкая текучесть. Применяется для производства узлов и составляющих подшипников различного назначения.
  • Коррозионностойкая (нержавеющая). Высоколегированная сталь с повышенной стойкостью к воздействию агрессивных веществ.
  • Жаропрочная. Отличается способностью длительное время работать в нагруженном состоянии при повышенных температурах. Область применения – детали двигателей, в том числе газотурбинных.
  • Инструментальная. Применяется для производства метало- и деревообрабатывающих, измерительных инструментов.
  • Быстрорежущая. Для изготовления инструмента металлообрабатывающего оборудования.
  • Цементируемая. Применяется при изготовлении деталей и узлов, работающих при больших динамических нагрузках в условиях поверхностного износа.

Читать также: Какими электродами варить инверторной сваркой

При расшифровке обозначений нужно учитывать, что каждому из видов соответствует строго определенная буква в маркировке.

Маркировка сталей по российским стандартам

Маркировка сталей по российским стандартам позволяет определить состав металла и, частично, принадлежность к определенному виду.

При наличии углерода в стали более 1 %, его количество в маркировке не указывается. Марка стали включает буквенные обозначения легирующих добавок с указанием их количества в десятых и сотых долях процента, но если содержание компонента менее 1,5 %, то в маркировке присутствует только буквенное обозначение.

Читать также: Чем выкрутить обломанный болт

Кроме химического состава, маркировка содержит символы, характеризующие назначение стали, степень ее качества.

Соответствие марки стали и стоимости

Существует мнение, что применяя самую низкую марку стали, которая является и самой дешевой, можно добиться минимальной стоимости конструкции. В действительности при увеличении прочности стали происходит снижение общей массы конструкции, следовательно, в итоге стоимость израсходованного проката будет ниже. Кроме того, происходит снижение нагрузки на фундамент и уровня сейсмических нагрузок.

Но при этом необходимо учитывать, что применение сталей с высокой прочностью не целесообразно, если подбор сечения выполняется с учетом обеспечения устойчивости.

Выбирая марки стали, рекомендуется получить информацию от поставщиков о наличии и возможности поставок требуемого материала. Такая мера необходима, так как при его замене на менее прочный требуется изменение профилей и узлов, что увеличивает сроки строительства, а замена профиля на более прочный приведет к перерасходу стали. Стали 09Г2С и Ст3сп/пс5 являются одними из наиболее распространенных и востребованных.

Состав химических элементов стали по анализу ковшовой пробы:

Наименование сталиМассовая доля элемента, %
углерода,не болеемарганцакремниясеры, не болеефосфорахроманикелямедиванадиядругих элементов
С2350,22Не более 0,60Не более 0,050,05Не более 0,040Не более 0,30Не более 0,30Не более 0,30
С245, С275, С345Т, С375Т0,22Не более 0,650,05-0,150,05Не более 0,040Не более 0,30Не более 0,30Не более 0,30
С255, С285, С345Т, С375Т0,22Не более 0,650,15-0,300,05Не более 0,040Не более 0,30Не более 0,30Не более 0,30
0,220,8-1,100,05-0,150,05Не более 0,040Не более 0,30Не более 0,30Не более 0,30
0,20,8-1,100,15-0,300,05Не более 0,040Не более 0,30Не более 0,30Не более 0,30
С345, С375, С390Т0,151,30-1,70Не более 0,800,04Не более 0,035Не более 0,30Не более 0,30Не более 0,30
С345К0,120,30-0,600,17-0,370,040,070-0,1200,50-0,800,30-0,600,30-0,50Алюминий 0,08-0,15
С3900,181,20-1,60Не более 0,600,04Не более 0,035Не более 0,40Не более 0,30Не более 0,300,07-0,12Азот 0,015-0,025
С390К0,181,20-1,60Не более 0,170,04Не более 0,035Не более 0,30Не более 0,300,20-0,400,08-0,15Азот 0,015-0,025
С4400,21,30-1,70Не более 0,600,04Не более 0,035Не более 0,40Не более 0,30Не более 0,300,08-0,14Азот 0,015-0,025
С5900,151,30-1,700,40-0,700,035Не более 0,035Не более 0,30Не более 0,30Не более 0,300,07-0,15Молибден 0,15-0,25
С590К0,140,90-1,400,20-0,500,035Не более 0,0350,20-0,501,40-1,75Не более 0,300,05-0,10Молибден 0,15-0,25
Азот 0,02-0,03
Алюминий 0,05-0,1

Выбор стали по показателям прочности

Сталь по показателям прочности условно подразделяется на три группы:

Классы прочности метрического крепежа

От правильного выбора крепежа по классу прочности зависит надежность, безопасность, долговечность крепежного соединения и всей конструкции. Эта характеристика является такой же важной, как размер элемента. Как определить класс прочности по маркировке? Что необходимо знать о свойствах крепежных элементов? Расскажем подробно.

Читать еще:  Можно ли варить оцинкованную сталь?

Содержание:

  1. 1. Прочность стального крепежа
  2. 2. Классы прочности гаек
  3. 3. О прочности шайб
  4. 4. Маркировка элементов из нержавеющей стали

Прочность стального крепежа

Все элементы с наружной метрической резьбой, такие как болты, винты, шпильки, различаются по классу прочности в пределах от 3.6 до 12.9. Это значение содержится в маркировке и обычно наносится на головку крепежа. Чем оно выше, тем прочнее крепеж.

Рассмотрим пример. На крепеже есть маркировка 8.8. Первое число показывает предел прочности на разрыв и определяет номинальное временное сопротивление (измеряется в Н/кв.мм). Чтобы узнать, соответствует ли крепежный элемент оказываемой на него нагрузке, необходимо 8 умножить на 100 – получим 800 (Н/кв.мм). Это минимальный предел прочности. Если нагрузка ниже данного значения, элемент выдержит. Второе число обозначает предел текучести, то есть натяжения, ведущего к пластической деформации крепежа. Определяется следующим образом: минимальный предел прочности умножается на соотношение второго числа, деленного на 10. Получим: 400х0,8 = 320 (Н/кв.мм). Если нагрузка будет превышать данное значение, начнется необратимое изменение формы и структуры элемента – он начнет течь, то есть деформироваться.

На заметку: предел прочности и текучести может обозначаться не только в ньютонах на квадратный миллиметр (Н/кв.мм), но и в мегапаскалях (МПа).

Есть условное разграничение метрического крепежа в зависимости от назначения.

  • Для малонагруженных соединений подходят изделия с классом прочности 4.8 и 5.8. Такие элементы изготавливаются из конструкционной углеродистой стали (марки 10 и 20).
  • Для ответственных нагруженных соединений предназначен крепеж с маркировкой 8.8. Это один из наиболее распространенных видов изделий, производится из закаленной стали (марки 35 и 20Г2Р).
  • Для особо тяжелых конструкций служат элементы классом прочности в 10,9 и 12,9. Это наиболее прочный крепеж, который способен выдерживать многократные циклы монтажа/демонтажа. Причем может иметь меньшие размеры, чем изделия низших классов прочности. Изготавливается из легированной стали (марки 40Х и 20Г2Р).

На заметку: при определении расчетной нагрузки на метрический крепеж необходимо заложить запас прочности, чтобы соединение было максимально надежным.

Классы прочности гаек

У данных элементов класс прочности обозначается так же, как у стальных болтов, винтов и шпилек. Единственная разница – маркировка на гайках начинается с класса 8.0. Маркировка наносится на торцевую часть. Изделия с низким классом прочности не маркируются и применяются для конструкций с небольшой нагрузкой.

При подборе гаек к резьбовым крепежным элементам учитывают следующую взаимосвязь:

  • гайки класса 5.0 и диаметром резьбы М16 подходят к болтам класса 3.6 – 4.8;
  • гайки класса 6.0 и диаметром резьбы М48 подходят к болтам класса 4.5 – 5.8;
  • гайки класса 8.0 сочетаются с болтами прочностью в 8.8 с подходящим типом резьбы (такие изделия выполнены из углеродистой или легированной стали, подходят для ответственных соединений);
  • гайки класса 10.0, 12.0 используются с болтами прочностью 10.9 и 12.9 соответственно (выполнены из легированной стали и закалены, служат для высоконагруженных конструкций и крепления тяжеловесных элементов).

На заметку: существуют гайки, не предназначенные для крепежных соединений под нагрузкой, – в начале маркировки ставится 0, например, класс прочности может быть 04 или 05.

Правильный выбор гайки и болта по классу прочности и соблюдение усилия затяжки гарантируют надежное и долговечное соединение. Ему не грозит разрушение или срыв резьбы.

О прочности шайб

Свойства данных элементов не определяются прочностью на разрыв и текучесть, так как их основная задача – равномерное распределение нагрузки на опорную поверхность. Аналогом прочности является их твердость – значение может находиться в диапазоне от 35 до 45 HRC. Назначение элементов определяется материалом изготовления и защитным покрытием. Элементы без покрытия применяются в местах, где нет воздействия влаги, цинковое или оксидированное покрытие дает возможность использовать крепеж на улице без угрозы образования коррозии.

Маркировка элементов из нержавеющей стали

Отдельно следует сказать о крепеже, изготовленном из нержавеющей стали. У него особая маркировка. Например, А2-70, где А-2 – это марка стали, 70 – предел прочности. Чтобы вычислить предел прочности, необходимо указанное значение умножить на 10: получим 700 МПа (что соответствует классу прочности крепежа из углеродистой стали 5.6).

Надеемся, что данная статья будет полезна при выборе крепежных изделий для конкретного вида работ. Вы сможете определить, подходит ли метрический крепеж под нагрузку и тип конструкции. Заказать болты, винты, шпильки, гайки и шайбы вы можете в нашем интернет-магазине. Выбрать подходящие элементы легко – в карточках товаров дана подробная информация о каждом из них.

Класс прочности и марки сталей — Болты. Винты. Шпильки

Классы прочности для болтов, винтов и шпилек обозначаются двумя числами, разделёнными между собой точкой.

3.6 4.6 4.8 5.6 5.8 6.6 6.8 8.8 9.8 10.9 12.9

Первая цифра маркировки класса прочности болта обозначает 0,01 часть номинального временного сопротивления — это предел прочности на растяжение — измеряется в МПа (мегапаскалях) или Н/мм² (ньютонах на миллиметр квадратный). Также первая цифра маркировки класса прочности обозначает ≈0,1 часть номинального временного сопротивления, если Вы измеряете предел прочности на растяжение в кгс/мм² (килограммах-силах на миллиметр квадратный).

Пример: Шпилька класса прочности 5.8: Определяем предел прочности на растяжение
5/0,01=500 МПа (или 500 Н/мм²; или ≈50 кгс/мм²)

Вторая цифра обозначает 0,1 часть отношения предела текучести (напряжения, при котором уже начинается пластическая деформация) к номинальному временному сопротивлению (пределу прочности на растяжение) — таким образом для шпильки класса прочности 10.9 второе число означает, что у шпильки, относящейся к этому классу, минимальный предел текучести будет равен 90% от значения предела прочности на растяжение, то есть будет равен: (10/0,01)×(9×0,1)=1000×0,9=900 МПа (или Н/мм²; или ≈90 кгс/мм²)

Пример: Шпилька класса прочности 5.8: Определяем предел текучести
500х0,8=400 МПа (или 400 Н/мм²; или ≈40 кгс/мм²)

Значение предела текучести — это максимально допустимая рабочая нагрузка болта, винта или шпильки, при превышении которой происходит невосстанавливаемая деформация. При расчётах нагрузки на болты, винты или шпильки используют 1/2 или 1/3 от предела текучести, то есть, с двукратным или трёхкратным запасом прочности соответственно.

Читать еще:  Отпуск и искусственное старение стали

Согласно существующим международным нормам, изготавливаемые из углеродистой стали болты, винты и шпильки с диаметром резьбы более М5, по возможности маркируются соответствующим классом прочности на головке или торце изделия.

Рекомендованные марки сталей
(в особых случаях также применяются и другие стали, когда их применение продиктовано дополнительными требованиями к крепежу)

Класс прочности 3.6 — марка стали Ст3кп Ст3сп Ст5кп Ст5сп
Класс прочности 4.6 марка стали Ст5кп Ст.10
Класс прочности 4.8 марка стали Ст.10 Ст.10кп
Класс прочности 5.6 марка стали Ст.35
Класс прочности 5.8 марка стали Ст.10 Ст.10кп Ст.20 Ст.20кп
Класс прочности 6.6 марка стали Ст.35 Ст.45
Класс прочности 6.8 марка стали Ст.20 Ст.20кп Ст.35
Класс прочности 8.8 марка стали Ст.35 Ст.35Х Ст.38ХА Ст.40Х Ст.45 Ст.20Г2Р
Класс прочности 9.8 марка стали Ст.35 Ст.35Х Ст.45 Ст.38ХА Ст.40Х Ст.30ХГСА Ст.35ХГСА Ст.20Г2Р
Класс прочности 10.9 марка стали Ст.35Х Ст.38ХА С.45 Ст.45Г Ст.40Г2 Ст.40Х Ст.40Х Селект Ст.30ХГСА Ст.35ХГСА
Класс прочности 12.9 марка стали Ст.30ХГСА Ст.35ХГСА Ст.40ХНМА

Класс стали

Страница 1 из 212>

В металле не очень силён помогите товарищи металлисты.

С завода прислали сертификат качества на сталь 09Г2С класса прочности 295 в нём предел текучести указан 390 Н/мм2.

Просят согласовать С345 заложенную в проект на эту С295.

Честно говоря я в непонятке как так класс стали 295 и такой бешеный предел текучести.

дискретизатор континуума (бывший)

похоже здесь какая-то ошибка, кто-то что-то не так понял или ошибся

по СНиП II-23-81* есть сталь класса С285, у нее нормативное значение временного сопротивления Run = 390 МПа (Н/мм2)

у 09Г2С предел текучести Ryn = 345 МПа

ну собственно, чего это я, снип то у вас тоже есть

не соглашайтесь, ищите кто ошибся, где косяк
химсостав попросите

cyberkolbasa
Посмотреть профиль
Найти ещё сообщения от cyberkolbasa

Прикол то вобщем то в том, что этот прокат выполнен по ГОСТ 19281-89 — Прокат стальной повышенной прочности

И в сертификате качества Временное сопротивление 520 Н/мм2 и предел текучести 390 Н/мм2

Конечно можно полезть в бутылку и сказать «Я вам написал С345 ищите её», но это не выход. Хотелось бы разобраться
Но меня то по идее волнует предел текучести,а не состав стали. Металл в тёплом помещении.
Непонятно как завод делает свои сертификаты.

Скорее всего ошибка
При пределе текучести 390н/мм2
класс стали не будет 295
Уточни на заводе

дискретизатор континуума (бывший)

Прикол то вобщем то в том, что этот прокат выполнен по ГОСТ 19281-89 — Прокат стальной повышенной прочности

И в сертификате качества Временное сопротивление 520 Н/мм2 и предел текучести 390 Н/мм2

тогда это сталь С390 ну никак не С295, ведь цифра в марке это и есть предел текучести

по несущей способности С390 явно превосхоит С345, поэтому просто определись подходит она тебе или нет (посмотри табл.50* СНиП, там написано где какие можно применять)

cyberkolbasa
Посмотреть профиль
Найти ещё сообщения от cyberkolbasa

С х100=11
Si x100=66
Mn x100=153
S x100=17
P x1000=16
Cr x100=3
Ni x100=4
Cu x100=6
N x1000=5

Кажись такой на факсе не очень четко видно.

дискретизатор континуума (бывший)

С х100=11
Si x100=66
Mn x100=153
S x100=17
P x1000=16
Cr x100=3
Ni x100=4
Cu x100=6
N x1000=5

Кажись такой на факсе не очень четко видно.

очень похоже на 09Г2С до С390 не дотягивает, слишком мало кремния, это и не С295 (С285) слишком много кремния и марганца
но серы в любом случае столько быть не может 0,04 это предел, а тут 0,17
проверь еще раз
серу
никель
хром
медь

зы. что у тебя за конструкция, где эксплуатируется, а то зря может гемор разводим, я вообще склоняюсь что на заводе накосячили, сталь вроде правильная а характеристики в сертификате левые
зы2. ничего что я на «ты»? немогу долго «выкать»

cyberkolbasa
Посмотреть профиль
Найти ещё сообщения от cyberkolbasa

Просят согласовать С345 заложенную в проект на эту С295.

Честно говоря я в непонятке как так класс стали 295 и такой бешеный предел текучести.

проектирование гидротехнических сооружений

Подскажите пожалуйста господа инженеры вот такую вещь:

Где можно посмотреть какие стальные элементы из какой стали производят? вопрос на первый взгляд тупой, но на самом деле проблема. Хоть в ГОСТах и написано что «такой тип, такой-то железяки производится из сталей марок . по ГОСТ . » — на практике оказывается что из всего перечня сталей из которых необходимая весчь должна делаться — заводы катают только из 2-3 классов. Причём доходит до обсурда — приходится обзванивать десятки заводов чтобы уточнить — могут ли они это сделать из той стали которая необходима, и бывали случаи что транспортировка до места строительства оказывалась по цене соизмерима со стоимостью самого элемента (а то и выше).

Поэтому очень хочется ещё при принятии конкретных решений в проекте знать, какую сталь лучше применить для данного элемента — возможно окажется что в ущерб экономии материала придётся сделать элемент более массивным но из стали похуже.

А если кто-нибудь даст ссылочку или направление поиска где и расценки есть по классам/маркам стали для различных стальных изделий — я буду просто счастлив.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]