E-polirovka.ru


12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние марганца на свойства стали

Влияние марганца на свойства стали

Источник:Аналитическая химия марганца. Лаврухина А.К., Юкина Л.В. М., «Наука», 1974, с.129-132.

Роль марганца в сталеплавильных процессах

Металлический марганец очень хрупок, поэтому в чистом виде он имеет ограниченное применение. В основном он используется для получения сплавов, важнейшим из которых является сталь.

Марганец как раскислитель в количестве 0,25 – 0,5% содержится в кипящей, полуспокойной и спокойной стали почти всех марок.

В кипящей стали марганец обычно является единственным раскислителем. Раскислительная способность марганца относительно не высока, но обычно бывает достаточной для раскисления кипящей стали. При наличии в металле кремния, алюминия, титана и других сильных раскислителей присутствие в расплаве указанного количества марганца не оказывает существенного влияния на его окисленность.

Основное положительное влияние марганца состоит в уменьшении вредного влияния на свойства стали серы. Марганец, имея высокое химическое сродство к сере, образует сульфид MnS, который при кристаллизации металла выделяется из раствора в виде тугоплавких, хаотически расположенных включений. Для выделения серы из металла в виде сульфидов марганца отношение концентраций марганца и серы в стали должно отвечать условию Mn/S > 20 – 22.

Марганец является одним из самых дешевых и распространенных легирующих элементов.

Марганец расширяет область устойчивого существования &#947 — Fe, т.е. повышает устойчивость аустенита и увеличивает степень его переохлаждения. Благодаря этому наличие в стали марганца резко уменьшает критическую скорость закалки. Поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая.

Растворяясь в феррите, марганец повышает прочностные характеристики стали (пределы прочности и текучести), особенно при содержании углерода 0,1 – 0,5%. Но при этом несколько уменьшается пластичность металла (относительное удлинение и ударная вязкость).

Повышая износостойкость и упругость металла, марганец широко применяется для легирования конструкционных, пружинно-рессорных, износостойких и других марок стали.

Чаще всего применяются низко- (0,8 – 1,8% Mn) и высоколегированные (10 – 15% Mn) стали, в которых в качестве легирующего элемента могут присутствовать также хром, никель и др. Марганец в легированных сталях часто является заменителем более дорогого и дефицитного никеля.

В конструкционных сталях марганец может быть единственным легирующим элементом (0,8 – 1,8%), но значительно чаще используется легирование металла марганцем в сочетании с кремнием, хромом и другими элементами.

Из высоколегированных сталей наиболее широкое распространение получила сталь 110Г13Л или сталь Гатфильда (1,0 – 1,2% C, 12 – 14% Mn). Этот металл обладает высокой износостойкостью, благодаря высокой вязкости и пластичности внутренних слоев металла при высокой твердости поверхностного слоя. Она используется для изготовления деталей, работающих в условиях ударно-адразивного изнашивания: зубья ковшей экскаваторов, шары шаровых мельниц и др. Сталь Гатфильда плохо поддается обработке давлением и резанием, поэтому изделия из нее в основном получают в литом виде.

В некоторых марках стали марганец является нежелательной примесью. Наличие в структуре металла карбидов марганца уменьшает пластичность стали, особенно при комнатной температуре. Поэтому, например, в низкоуглеродистой стали, предназначенной для получения изделий методом глубокой штамповки без нагрева (автомобильные кузова и др.) и в стали для изготовления канатов содержание марганца не должно превышать 0,2 – 0,3%.

Основные физико-химические свойства марганца

Марганец имеет следующие физико-химические свойства: относительная атомная масса – 54,93; плотность – 7420 кг/м 3 ; температура плавления – 1244&#176С; температура кипения – 2150&#176С; теплота плавления – 14700 Дж/моль.

Влияние температуры на величину давления насыщенного пара марганца можно описать уравнением

где PMn – давление насыщенного пара марганца, Па.

При 1600&#176С PMn = 3,2 кПа, тогда как давление насыщенного пара железа при этой температуре составляет около 20 Па. Поэтому в испарениях металла марганец всегда присутствует в значительных количествах, хотя его содержание в самом металле во много раз меньше содержания железа. В связи с этим в сталеплавильных процессах иногда приходится учитывать возможность потерь марганца вследствие испарения, например, во время выпуска плавки с высоким содержанием марганца, при вакуумировании, а также при различных способах переплава с использованием вакуума.

Свойства и размеры атомов железа и марганца почти идентичны Атомным радиусы железа и марганца равны соответственно 1,28 &#183 10 -8 и 1,31 &#183 10 -8 см, радиусы ионов – 0,82&#183 10 -8 и 0,91 &#183 10 -8 см. У &#947 — Fe и &#948 — Mn сходные типы кристаллических решеток и очень близкие их параметры.

По этой причине в жидком железе марганец имеет неограниченную растворимость. Его растворение сопровождается очень малым тепловым эффектом, поэтому раствор марганца в жидком железе с достаточной для практических целей точностью можно считать идеальным.

Влияние химических элементов на свойства стали.

Каталог
Наш Instagram

Влияние хим. элементов на свойства стали.

Условные обозначения химических элементов:

хром ( Cr ) — Х
никель ( Ni ) — Н
молибден ( Mo ) — М
титан ( Ti ) — Т
медь ( Cu ) — Д
ванадий ( V ) — Ф
вольфрам ( W ) — В
азот ( N ) — А
алюминий ( Аl ) — Ю
бериллий ( Be ) — Л
бор ( B ) — Р
висмут ( Вi ) — Ви
галлий ( Ga ) — Гл
иридий ( Ir ) — И
кадмий ( Cd ) — Кд
кобальт ( Co ) — К
кремний ( Si ) — C
магний ( Mg ) — Ш
марганец ( Mn ) — Г
свинец ( Pb ) — АС
ниобий ( Nb) — Б
селен ( Se ) — Е
углерод ( C ) — У
фосфор ( P ) — П
цирконий ( Zr ) — Ц

ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец — как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера — является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Читать еще:  Сталь d2 и х12мф сравнение

ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)- в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) — при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

Влияние химического состава на механические свойства стали

Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.

Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.

Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.

Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.

Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.

Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.

Хром (Cr) повышает прочность, закаливаемость и жаростойкость, режущие свойства и стойкость на истирание, но снижает вязкость и теплопроводность стали. Содержание большого количества хрома (в обычных сортах стали доходит до 2%, а в специальных — до 25%) делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.

Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.

Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.

Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.

Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.

Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.

Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.

Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.

В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «ЦЭИИС» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).

Рис.1 — Испытание арматурного стержня для определения химического состава стали.

Рис.2 — Испытания арматурной стали на растяжение.

Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:

где υ – выборочный коэффициент вариации,

tα,k – коэффициент Стьюдента,

α=1-P – уровень значимости (Р — доверительная вероятность),

k = n-1 – число степеней свободы,

Читать еще:  Полную закалку используют обычно для сталей

ΔМ – максимальная относительная ошибка (допуск) при оценке математического ожидания в долях математического ожидания (ΔМ = γ*δМ, где γ — генеральный коэффициент вариации, δМ – максимальная ошибка при оценке математического ожидания в долях среднеквадратического отклонения).

Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.

По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.

Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.

Уравнение множественной регрессии может быть представлено в виде:

Y = f (β, X) + ε,

где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.

Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Основные свойства и значение марганца

Марганец

Марганец имеет следующие физико-химические свойства: атомную массу 54,93; плотность 7,42 г/см 3 ; температуру плавления 1244°С; температуру кипения 2150°С; теплоту плавления 14700 Дж/моль.

При 1600 °С рмп = 3,7 кПа, тогда как упругость пара железа при этой температуре составляет всего 20 Па, поэтому в испарениях металла обычно марганец содержится в значительных количествах, хотя его содержание в самом металле во много раз меньше содержания железа. В связи с этим в сталеплавильных процессах приходится учитывать возможность испарения марганца, например, во время выпуска плавки с высоким содержанием марганца, при вакуумировании, особенно при различных способах переплава с использованием вакуума. Металлический марганец очень хрупок, поэтому он в чистом виде имеет ограниченное применение, в основном используется для получения различных сплавов, важнейшим из которых является сталь.

Марганец в жидком железе имеет неограниченную растворимость, и это растворение протекает без теплового эффекта (без химического взаимодействия), так как марганец является ближайшим соседом железа в Периодической системе элементов Д. И. Менделеева.

С примесями металла марганец может образовывать различные химические соединения, наиболее важными из которых являются MnO, MnS и Мn3С. Марганец в готовой стали в большинстве случаев является полезной примесью, служащей для раскисления и легирования.

Раскислительная способность марганца относительно невысока, но обычно бывает достаточной для раскисления кипящей стали.

Влияние марганца на свойства стали.Основное положительное влияние марганца на свойства стали состоит в уменьшении вредного влияния серы. Марганец, имея высокое химическое сродство к сере, легко образует сульфид MnS, который при кристаллизации металла выделяется в виде твердых, случайно расположенных включений, приносящих во много раз меньше вреда, чем FeS. Для выделения серы в виде менее вредных твердых включений необходимо иметь в стали следующее отношение содержания марганца и серы: [Mn]/[S] ≥20-22.

Марганец как легирующий элемент является одним из самых дешевых и наиболее распространенных. Марганец повышает устойчивость аустенита и увеличивает степень его переохлаждения. Благодаря этому марганец резко уменьшает критическую скорость закалки, поэтому марганцовистая сталь прокаливается значительно глубже, чем простая углеродистая. Растворяясь в феррите, марганец повышает прочность стали (пределы прочности и текучести), особенно в области содержаний 0,1—0,5 % С, но несколько снижает пластичность стали (относительное удлинение и ударную вязкость). Марганец повышает износостойкость и упругость стали, широко применяется для легирования конструкционных, пружинно-рессорных, износостойких и других сталей.

Чаще всего применяют стали низко- (0,8—1,8 % Mn) и высоколегированные (10—15% Mn), в которых в качестве легирующих элементов могут быть также хром, никель и др. Марганец в легированных сталях часто является заменителем более дорогого и дефицитного никеля.

В конструкционных сталях марганец может быть единственным легирующим элементом (0,8—1,8%) или в сочетании с другими: в шарикоподшипниковой — в сочетании с хромом (0,9—1,2% Mn, 1,3—1,6% Сг, 0,95—1,1% С), в рессорно-пружинной — в сочетании с кремнием (0,6—0,9 % Mn, 1,5—2,0% Si, 0,5—0,6% С). Из высоколегированных наибольшее распространение имеет сталь 110Г13Л (сталь Гатфильда), содержащая 1,0—1,2% С и 12—14% Mn и обладающая высокой износостойкостью благодаря большой вязкости и пластичности при высокой твердости. Она используется для изготовления различных деталей, подвергающихся сильному истиранию: зубьев ковшей экскаваторов и драг, шаров шаровых мельниц и т. д. Сталь Гатфильда плохо поддается обработке давлением и резанием, и изделия из нее в основном получают в литом виде.

Марганец вследствие образования прочных карбидов несколько снижает пластичность стали, особенно при обыч­ной температуре.

Поведение марганца в сталеплавильных ваннах.Марганец вносится в сталеплавильную ванну в основном с чугуном и ломом. В зависимости от содержания марганца в чугуне и ломе и их соотношения содержание марганца в исходной шихте изменяется в широких пределах: от 0,3—0,5 до 1,0—1,5 % и более. В сталеплавильной ванне марганец в основном окисляется до MnО. Одновременно образуется и некоторое количество Mn2Оз, но это практического значения не имеет, поэтому в сталеплавильных процессах достаточно рассмотрение реакции образования MnО.

Окисление марганца в период окислительного рафинирования протекает по реакции [Mn]+(FeO)=(MnО)+[Fe], а в период раскисления — по реакции [Mn]+[О]=MnО.

Характерно, что при раскислении металла только марганцем, как правило, MnО выделяется в виде сплава MnО — FeO.

Содержание марганца в металле по ходу плавки изменяется, подчиняясь следующим общим закономерностям.

В периоды плавки, когда реакция окисления марганца не находится в состоянии равновесия, а протекает в сторону образования оксида, содержание марганца в металле только уменьшается, но с разной скоростью в зависимости от кон­кретных условий — интенсивности поступления кислорода в ванну, концентрации марганца и других окисляющихся примесей в металле, температуры, содержания оксидов железа в шлаке и т. п. В конкретном процессе (при постоянной скорости поступления кислорода и т. п.), чем больше концентрации марганца и оксидов железа и выше температура, тем больше скорость окисления марганца и наоборот, поэтому обычно продолжительность окисления марганца в начале плавки в незначительной степени зависит от исходной его концентрации в металле.

После достижения равновесия содержание марганца в металле по ходу процесса может оставаться неизменным при постоянстве внешних условий или изменяться в сторону увеличения или уменьшения в зависимости от характера изменения внешних условий — температуры, окисленносги ванны, количества шлака и т. п. Повышение температуры способствует увеличению содержания марганца в металле, так как реакция окисления его экзотермическая, а увеличение количества шлака и повышение окисленности ванны приводят к его снижению, и наоборот.

Читать еще:  Сталь 40х ГОСТ 4543 88

В конце плавки обычно температура ванны повышается, а количество шлака увеличивается незначительно, поэтому в случаях незначительного изменения содержания FeO в шлаке концентрация марганца в металле в конце плавки повышается. Это наблюдается при содержании углерода в металле 0,2—0,3 % и более. Если содержание углерода в металле очень низкое (не более 0,05—0,07 %), то вследствие резкого повышения содержания FeO в шлаке концентрация марганца в металле снижается, несмотря на дополнительное повышение температуры, неизбежное при выплавке низкоуглеродистон стали. В частном случае, когда к концу плавки происходит снижение содержания марганца в металле в результате повышения FeO в шлаке в той мере, в какой происходит его повышение благодаря возрастанию температуры, в конце плавки концентрация марганца в металле остается на одном уровне.

Уровень концентрации марганца в металле в конце плавки зависит от многих факторов, главными из которых являются содержание марганца в исходной шихте, шлаковый режим плавки и концентрация углерода в металле.

Содержание MnО в шлаке по ходу плавки уменьшается. Высокое содержание MnО в начале плавки объясняется тем, что марганец металла в основном окисляется в этот период. В дальнейшем в результате увеличения количества шлака и восстановления марганца содержание MnО в шлаке уменьшается. Это уменьшение происходит практически до конца плавки, так как и формирование шлака, и повышение температуры ванны не прекращаются до окончания плавки.

Поскольку марганец в готовой стали обычно является полезной примесью, то, если возможно, принимают такой шлаковый режим, который обеспечивает наибольшее сохранение его в металле.

Обеспечение заданного содержания марганца в готовой стали.В большинстве случаев остаточное содержание марганца бывает значительно меньше заданного. Заданное содержание марганца в готовой стали обеспечивается введением его в металл в виде того или иного металлического марганецсодержащего материала (ферромарганца, силикомарганца, металлического марганца и др ) в конце плавки в ванну или в ковш при выпуске, во время обработки вакуумом и нейтральным газом.

Ферромарганец хорошо растворяется в жидком железе. Кроме того, при растворении ферромарганца происходит незначительное снижение температуры металла. Растворение в жидком металле, имеющем температуру 1600—1620 °С, 1 % твердого холодного ферромарганца может вызвать охлаждение металла примерно на 16—17 °С.

При выплавке углеродистых сталей ферромарганец обычно вводят в ковш, не опасаясь большого охлаждения металла. При введении ферромарганца в ковш уменьшаются потери в результате окисления и испарения. Увеличив дополнительный перегрев металла, можно легировать сталь в ковше ферромарганцем при любом его расходе. Смешение жидкого ферромарганца с жидким железом протекает практически без теплового эффекта. Во избежание значительного охлаждения металла при введении в ковш больших количеств ферромарганца используют предварительный нагрев ферросплава. Например, нагрев ферромарганца до 800—900 °С позволяет вводить его в ковш до 4 % без заметного охлаждения металла. Обеспечение необходимого содержания марганца в готовой стали не всегда может сводиться только к введению в металл того или иного количества ферромарганца с учетом возможного окисления марганца в процессе растворения этого материала. В некоторых случаях необходимо учитывать возможное восстановление марганца в процессе раскисления и легирования. Значительное восстановление марганца возможно при резком снижении (FeO), что бывает при так называемом диффузионном раскислении.

|следующая лекция ==>
Окисление углерода|Окисление и восстановление марганца

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Влияние марганца на свойства стали

Уважаемые преподаватели, сотрудники и студенты!

Уведомляем Вас о том, что в период с 16.07.2021 по 01.08.2021 гг. доступ к Образовательному порталу МГТУ им. Г.И. Носова будет закрыт в связи с плановыми техническими работами, сервисы Образовательного портала могут быть не доступны.

Справки об обучении студенты могут заказать по телефону: 23-57-55 (Москвина Анна Вадимовна).

Справки о доходах студенты могут заказать по телефону: 22-09-19 (Ильина Венера Ахатовна).

Международный молодежный конкурс социальной антикоррупционной рекламы

«Вместе против коррупции!»

Продолжается приём работ на Международный молодёжный конкурс социальной антикоррупционной рекламы «Вместе против коррупции!». Конкурс проводится для молодёжи из всех государств мира. Он организован Генеральной прокуратурой Российской Федерации при поддержке Минпросвещения России.

Приём работ продлится до 1 октября 2021 года на официальном сайте конкурса https://www.anticorruption.life/ в двух номинациях – социальный плакат и социальный видеоролик. Участниками могут стать граждане любого государства (авторы – физические лица или творческие коллективы) в возрасте от 14 до 35 лет.

Для участия в конкурсе необходимо заполнить регистрационную форму на сайте и подтвердить своё согласие с правилами конкурса, а также дать согласие на обработку персональных данных. Конкурсные работы в электронном виде загружаются через личный кабинет на сайте.

Подробнее с правилами можно ознакомиться здесь.

Технологии будущего: квантовый курс CERN по-русски

Некоммерческая школа стартапов RUSSOL, партнер запустила краудфандинг курса по основам квантовых вычислений. На русский язык будут переведены 7 лекций об альтернативе классическим вычислениям, основанной на процессах квантовой физики — ее базовых алгоритмах, способах применения сейчас и возможностях использования завтра.

Все материалы созданы экспертами CERN — крупнейшей в мире лаборатории физики высоких энергий, построившей и запустившей “тот самый” Большой адронный коллайдер.

Внедрение квантовых компьютеров в ближайшие 15-30 лет даст возможности, недоступные сейчас даже суперкомпьютерам, а также позволит значительно ускорить разработку лекарственных препаратов, и создавать принципиально новые типы материалов (например, мы сможем предсказывать механические свойства полимеров).

Чтобы не остаться на обочине прогресса, стать востребованными и влиться в гонку технологий, студентам уже сейчас необходимо понимать основы квантовых вычислений. Открытый для студентов курс CERN — это шанс стать первопроходцем и научиться создавать новые продукты и приложения на базе квантовых технологий уже сегодня.

В результате реализации инициативы на Youtube появится отдельный канал с лекциями с русскими субтитрами и сайт с расшифровками и конспектами. После вычитки перевода курс будет доступен студентов КГЭУ, Сколтеха, МФТИ и ряда других. Чуть позднее — доступ получат все желающие.

Кампания продлится 30 дней. Ее авторы просят вас рассказать о запуске своим друзьям, а также распространить информацию о нем в соцсетях. Взамен — вы получите доступ к курсу первыми. Поддержать авторов можно и рублем, ну или символической сотней). Важны не столько деньги, сколько факт участия. Подробности — на странице кампании.

Квантовые вычисления — одна из четырех технологий, которую поддерживает программа RUSSOL 365 — наряду с автономными роботами, летающими автомобилями и освоением космоса. Цель кампании — способствовать появлению в России будущих Масков, Гейтсов и Безосов и в перспективе — ускорению технологического развития нашей страны. Хорошо развиваться экономика должна и здесь, а не только за рубежом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector