E-polirovka.ru


0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технологические особенности металлургии чугуна и стали

Технологические особенности металлургии чугуна и стали

Ключевые слова конспекта: производство чугуна, производство стали, железная руда, чугун, сталь, руда, кокс, силикат кальция, пирит, доменная печь.

ПРОИЗВОДСТВО ЧУГУНА. ДОМЕННАЯ ПЕЧЬ

По объёму производства и потребления железо является важнейшим металлом. Обычно железо используется в виде сплавов. Отрасль промышленности, производящая железо и его сплавы, – чёрная металлургия.

Источником получения железа является железная руда. В руде основными компонентами являются соединения железа:

  • Fe3O4 – магнетит (магнитный железняк),
  • Fe2O3 – гематит (красный железняк),
  • Fe2O3nH2O – лимонит (бурый железняк),
  • FeS2 – пирит (железный колчедан, серный колчедан).

Пирит сначала обжигают (в ходе производства серной кислоты), а огарок (Fe2O3) используют в производстве чугуна.

Продуктами производства являются чугун и сталь.

Чугун – сплав железа с углеродом, в котором массовая доля углерода составляет более 2%, а также имеются примеси кремния, фосфора, серы и марганца.

Производство чугуна осуществляют в доменных печах (см. рис). Сырьём для производства являются железная руда, кокс, известняк и горячий воздух.

Доменную печь загружают сначала коксом, а затем послойно агломератом и коксом. (Агломерат – это определённым образом подготовленная руда, спечённая с флюсом, в данном случае – с известняком.) Через специальные отверстия (фурмы) в нижнюю часть домны подаётся горячий воздух, обогащённый кислородом. В нижней части домны кокс сгорает, образуя СO2, который, поднимаясь вверх и проходя сквозь слои накалённого кокса, взаимодействует с ним и образует СО:

Руда последовательно претерпевает превращения:

В руде присутствует также пустая порода, которую образует главным образом кремнезём – SiO2. Это тугоплавкое вещество. Для превращения его в легкоплавкие соединения к руде добавляется флюс. Обычно это известняк. При взаимодействии его с кремнезёмом (SiO2) образуется силикат кальция:

СаСO3 + SiO2 = CaSiO3 + CO2(800 °С)

Образующийся силикат легко отделяется в виде шлака.

При восстановлении руды железо получается в твёрдом состоянии. Постепенно оно опускается в более горячую часть печи – распар – и растворяет в себе углерод. Образуется чугун. Последний плавится и стекает в нижнюю часть домны, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки периодически выпускают через особые отверстия.

Когда металлическое железо выделяется в жидком состоянии, в нём сравнительно хорошо растворяется углерод. При кристаллизации такого раствора образуется чугун – сплав железа с углеродом. Он обладает высокой хрупкостью из-за большого содержания в нём карбида железа Fe3C (цементита), который образуется в результате побочных реакций:

3Fe + С = Fe3C
3Fe + 2СО = Fe3C + СO2

В чугуне содержатся примеси фосфора, серы. Сера ухудшает текучесть чугуна и вызывает красноломкость стали – хрупкость при нагревании до температуры красного каления. Фосфор вызывает хладноломкость стали – хрупкость при обычной температуре.

ПРОИЗВОДСТВО СТАЛИ

Сталь – сплав железа с углеродом, в котором массовая доля углерода составляет менее 2%.

Сущность получения стали из чугуна заключается в уменьшении содержания углерода в металле и возможно более полном удалении примесей – серы и фосфора, а также в доведении содержания кремния, марганца и других элементов до требуемых пределов.

Существует несколько способов переработки чугуна в сталь : мартеновский, бессемеровский и томасовский. Они различаются методами окисления.

В бессемеровском и томасовском способах окисление осуществляется кислородом воздуха, продуваемого через расплавленный металл. Во всех процессах углерод, содержащийся в металле, окисляется до СО и СO2, удаляемых из реакционной зоны. Кремний Si, марганец Мn, хром Сг и другие металлы, окисляясь, переходят в шлак в виде SiO2, МnО и т. д.

Механизм процесса окисления может быть представлен следующим образом. В первую очередь окисляется часть железа. Часть образующихся оксидов растворяется в металле и взаимодействует с примесями:

С + FeO ⇆ Fe + СО
Si + 2FeO
⇆ 2Fe + SiO2
2
P + 5FeO ⇆ 5Fe + P2O5

Для максимального удаления примесей серы и фосфора необходимо, чтобы в процессе передела чугуна получались основные шлаки; это достигается путём добавления известняка или извести. Сера, содержащаяся в чугуне в виде FeS, реагирует с оксидом кальция СаО:

FeS + СаО = CaS + FeO

Образующийся сульфид кальция переходит в шлак. Образовавшийся P2O5 также взаимодействует с известью, образуя фосфат кальция, переходящий в шлак:

3СаО + P2O5 = Са3O4)2

Бессемеровский и томасовский способы осуществляют в конвертерах. Конвертеры – аппараты грушевидной формы, изготовленные из специальной котельной стали (кожух) и футерованные изнутри огнеупорными материалами.

Конспект урока по химии «Производство чугуна и стали. Доменная печь». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по химии
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии

Производство чугуна и стали

Установки для автоматической сварки продольных швов обечаек — в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки — в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Металлы и сплавы по химическому составу делятся на цветные (медь, алюминий, свинец, бронза, латунь и др.) и черные (железо, сталь, чугун). В чистом виде металлы используются редко, а в основном — в виде сплавов.

Чугун и сталь это сплавы железа с углеродом, в которых неизбежно наличие примесей других химических элементов:

Сталь: Fe + С ( 2 % )+ примеси (больше, чем у стали).

Что общего и в чем различия между этими сплавами?

Основа одна — железо. Главное отличие заключается в том, что чугун имеет повышенное содержание углерода (свыше 2 % в чугунах и до 2 % в сталях) Граница между этими сплавами проходит по содержанию углерода в сплаве .Так же больше во многих чугунах марганца, серы, фосфора и кремния.

Стали чаще всего более твердые, прочные и износостойкие. Чугуны же более хрупкие, но обладают хорошими литейными свойствами. Сталь является производной от чугуна, т.к. производство её в основном двух стадийное: из железных руд сначала получают чугун, далее из чугуна и стального лома получают сталь.

Почти половина разведанных мировых запасов железа находится на территории государств СНГ. Добывалось и производилось чугуна и стали в бывшем СССР больше всех в мире . Причинами этого «достижения» были : несовершенство конструкций и низкая надежность машин и оборудования; низкое качество выплавляемых чугунов и сталей; огромные территории; большая протяженность дорог и коммуникаций; низкая эффективность сельскохозяйственного производства, ,строительных и дорожных работ. Всё это требовало намного больше металла, чем в других странах. И, кроме того, зарытого металла в земле на стройках, брошенного на свалках, в лесах, болотах и на полях было больше всех в мире.

В историческом плане производство черных металлов развивалось по следующим этапам:

    Сыродутный процесс ( 1500 лет до н. э. ). Производительность процесса очень низкая, получали за 1 час всего до 0,5… 0,6 кг железа. В кузнечных горнах железо восстанавливалось из руды углём при продувке воздухом с помощью кузнечных мехов.
    Сначала при горении древесного угля образовывалась окись углерода, которая и восстанавливала чистое железо из руды.

В результате длительной продувки воздухом из кусочков руды получались практически без примесей кусочки чистого железа, которые сваривались между собой кузнечным способом в полосу, которые далее использовались для производства необходимых человеку изделий. Это технически чистое железо содержало очень мало углерода и мало примесей (чистый древесный уголь и хорошая руда), поэтому оно хорошо ковалось и сваривалось и практически не корродировало. Процесс шел при относительно невысокой температуре (до 1100…1350 o С), металл не плавился, т. е. восстановление металла шло в твердой фазе. В результате получалось ковкое (кричное) железо. Просуществовал этот способ до XIV века, а в несколько усовершенствованном виде до начала XX века, но был постепенно вытеснен кричным переделом.

Отсюда следует, что исторически самым первым сварщиком металлов был кузнец, а самый первый способ сварки — это кузнечная сварка.

  • С увеличением размеров сыродутных горнов и интенсификацией процесса возрастало содержание углерода в железе, температура плавления этого сплава (чугуна) оказывалась ниже, чем у более чистого железа и получалась часть металла в виде расплавленного чугуна, который как отход производства вытекал из горна вместе со шлаком.
    В XIV век в Европе был разработан двухступенчатый способ получения железа (маленькая домна, далее кричной процесс). Производительность увеличилась до 40 …50 кг/час железа. Использовалось водяное колесо для подачи воздуха.
    Кричный передел — это процесс рафинирования чугуна (снижение количества C, Si, Mn) с целью получения из чугуна кричного (сварочного) железа.
  • В конце XVIII века в Европе начали использовать минеральное топливо в доменном процессе и в пудлинговом процессе. При пудлинговом процессе каменный уголь сгорает в топке, газ проходит через ванну, расплавляет и очищает металл. В Китае даже раньше, в X-ом веке, выплавляли чугун, а далее получали сталь процессом пудлингования. Пудлингование- это очистка чугуна в пламенной печи. При очистке железные зерна собираются в комья. Пудлиновщик ломом много раз переворачивает массу и делит ее на 3…5 частей – криц. В кузнице или прокатной машине свариваются зерна и получают полосы и другие заготовки. Используются уже паровые машины вместо водяного колеса. Производительность возрастает до 140 кг сварочного железа в час.
  • В конце XIX века — почти одновременно внедряются три новых процесса получения стали: бессемеровский, мартеновский и томасовский. Производительность плавки стали возрастает резко (до 6 тн/час).
  • В середине XX века: внедряются кислородное дутье, автоматизация процесса и непрерывная разливка стали.
  • Читать еще:  Изготовление дамасской стали в домашних условиях

    При сыродутном, кричном и пудлинговом процессах железо не плавилось (технический уровень того времени не давал возможность обеспечить температуру его плавления). Продувка кислородом расплавленного металла в бессемеровском конверторе из-за резкого увеличения поверхности соприкосновения металла с окислителем (кислородом) в тысячу раз ускоряет химические реакции по сравнению с пудлинговой печью.

    В сыродутном и кричном процессах получали одностадийным методом ковкое, сварочное железо (малоуглеродистую сталь), причём имеющее небольшое количество примесей, поэтому весьма стойкое к коррозии. Сейчас в стадии развития находится одностадийный процесс производства стали: обогащение руд (получение окатышей, содержащих 90… 95 % железа) и выплавка стали в электропечи.

    Производство чугуна

    Чугун выплавляется в домнах. Это сложное инженерное сооружение, работающее непрерывно в течение 5..10 лет.

    Печь работает по принципу противотока. Сверху загружается руда ,флюсы и кокс, а снизу подается воздух. Кокс служит для нагревания и расплавления руды , а также участвует в восстановлении железа из окислов руды. В коксе должно быть минимум серы и фосфора. Флюсы (известняки, кремнеземы. ) необходимы для получения шлаков При сгорании топлива образуется окись углерода, которая и является главным восстановителем железа.

    Производство стали

    Чтобы получить сталь из чугуна надо уменьшить в нем количество углерода, марганца, серы и фосфора. Сталь получают в кислородных конверторах, мартеновских печах и электропечах.

    Мартеновское производство менее производительное, чем конверторное, но лучше регулируется процесс, используются чугунные чушки и металлолом. Мартен это регенеративная пламенная печь. Газ сгорает над плавильным пространством, где создается температура 1750… 1800 o С. Газ и воздух предварительно подогреваются ( до 1200…1250 o С) в регенераторах. За счет тепла сгоревших газов, выходящих в трубу. Два регенератора : один работает, а другой накапливает тепловую энергию. Для интенсификации процесса ванну продувают кислородом. Раскисление ванны проводят ферросилицием и феромарганцем в ванне, а окончательное – алюминием и ферросилицием в сталеразливочном ковше.

    Сталь высокого качества выплавляют в дуговых и индукционных электропечах. Процесс примерно такой же как и в мартеновской печи, но температура выше, поэтому можно получать в электропечах тугоплавкую сталь , содержащую хром, вольфрам и др. Два периода при выплавке электростали: окислительный (выгорают Si, Mn, C, Fe) за счет кислорода, воздуха и оксидов шихты; восстановительный — раскисление стали, удаление серы. Для этого вводят флюс, состоящий из извести и плавикового шпата.

    Индукционная плавка применяется обычно для переплавки сталей и получения высоколегированных и специальных сталей в условиях вакуума или специальной регулируемой атмосферы.

    Источник: Н.В. Храмцов. Металлы и сварка (лекционный курс)

    Технология производства чугуна и стали

    Состав и структура металла

    Производство чугуна и стали — важная отрасль в жизни страны. И для начала мы поговорим про состав первого металла.

    Чугун делают из железосодержащей руды. После производства чугун имеет следующий состав:

    • Железо, в состав которого входит углерод.
    • Марганцевую примесь.
    • Серную примесь.
    • Фосфорную примесь.
    • Кремневую примесь.

    Процентное содержание углерода в чугуне составляет примерно 2,14%.

    Чугун бывает несколько видов: белый и серый. Каждый вид имеет индивидуальный состав и структуру.

    Данное видео расскажет о составе чугуна и стали, а также нюансах их производства:

    Белый вид

    Благодаря особенностям состава белый чугун имеет светлый оттенок. Рассмотрим состав белого чугуна:

    • Цементит (в этом состоянии здесь находится углерод).
    • Перлит.
    • Ледебурит.
    • Кремний.
    • Фосфор.
    • Марганец.
    • Сера.

    Серый вид

    В составе серого чугуна отсутствует один компонент (ледебурит). Серый чугун состоит из:

    • Графита (в этом виде здесь представлена некоторая часть углерода).
    • Перлита.
    • Кремния.
    • Фосфора.
    • Марганца.
    • Серы.

    Углерод и иные компоненты

    • Самый главный элемент в чугуне, конечно же, углерод. В зависимости от его количественного содержания получается материал различного сорта.
    • После углерода, на втором месте стоит кремний. Его процентное содержание влияет на мягкость, текучесть и литейный свойства материала.
    • Благодаря такому элементу, как марганец, чугун приобретает прочность.
    • Наличие фосфора в материале делает его способным быстро образовывать трещины в холодных отливках. Кроме этого, эта примесь существенно снижает механические свойства чугуна. Из-за фосфора чугун получается твердым и очень прочным. Но такой чугун не используют для производства деталей, от которых требуется повышенная прочность.
    • Самое вредная примесь – это сера. Ее наличие отрицательно влияет на тугоплавкость и жидкотекучесть материала.

    Если разломить белый и серый чугун, то можно увидеть совершенно разные структуры. Визуально структуру серого чугуна можно представить в виде металлической матрицы с кристаллами графита. Матрица может иметь совершенно разный вид. Различают:

    • Ферритный вид (в составе структуры нет связанного углерода).
    • Феррито-перлитный вид (есть связанный углерод в количестве до 0,8%).
    • Перлитный вид (количество углерода 0,8%).

    На структуры влияет температура. В случае быстрого охлаждения получается перлитная структура, а в случае медленного – ферритная.

    Графит

    В зависимости от формы графита различают:

    • Ковкий чугун (кристаллы графита имеют хлопьевидную форму).
    • Высокопрочный чугун (кристаллы графита имеют сферическую форму).
    • Обыкновенный серый чугун (графит имеет пластинчатую форму).

    Графит может включаться в структуру серого чугуна различным способом. В зависимости от этого чугун бывает:

    • С гнездообразной структурой.
    • С игольчатой структурой.
    • С пластинчатой прямолинейной структурой.
    • С пластинчатой завихренной структурой.

    Если сравнивать между собой белый и серый чугун, то наиболее применяемым является серый. Белый чугун проблематично порезать, он трудно отливается. К тому же ему свойственны твердость и хрупкость.

    Химический состав

    Чугуны могут изготавливаться по назначению. В зависимости от назначения и определенного химического состава, чугуны бывают:

    1. Высокопрочные. Высокопрочный чугун получают путем введения в серый чугун (состояние жидкое) специальных добавок. Его используют для очень ответственных деталей. Высокопрочным чугуном часто заменяют сталь.
    2. Ковкие. Ковкий чугун получают из белого. Для производства применяют термообработку. Ковкий чугун обладает хорошей вязкостью, высокой пластичностью, повышенным сопротивлениям к ударам и растяжением.
    3. Легированные. Легированный чугун содержит практически все элементы. То есть в его состав входит титан, хром, никель, сера. Материал отличается износостойкостью, твердостью и прочностью. Такой вид чугунов преимущественно используют для производства деталей машин с высокими механическими свойствами. В зависимости от преобладающего элемента чугуны бывают никелевые, хромистые и титановые.
    4. Специальные (ферросплавы). В специальном чугуне присутствует высокое содержание нескольких элементов: это кремний и марганец. Такие чугуны в основном идут для плавки стали и позволяют удалить из стали вредную примесь (кислород).

    Далее рассмотрены литейное, доменное и иные процессы в производстве чугуна, а также указаны исходные материалы для этого.

    О производстве чугуна и стали расскажет данный видеоролик:

    Магнитная окись железа

    Магнитная окись железа в рудах представлена минералом магнетитом. Руду, содержащую в основном магнетит, называют магнитным железняком. Магнетит можно рассматривать как закись-окись железа FeO ⋅ Fe2 О3. Под действием влаги и кислорода атмосферы закись железа в молекуле FeO ⋅ Fe2 О3 реагирует с кислородом воздуха, переходя в безводную окись железа Fe2 О3.

    Образовавшийся минерал по составу является гематитом, но отличается кристаллической решеткой и называется мартитом. Поэтому магнетит в природных условиях всегда окислен. Для характеристики окисленности магнетита принято пользоваться отношением Feобщ / FeFeO . В чистом магнетите это отношение равно 3,0. Обычно к магнитным железнякам относят руды, в которых это отношение меньше 3,5. При отношении равном 3,5 – 7,0, руды относят к полумартитам, а при отношении, большим 7 – к мартитам.

    Магнитный железняк встречается обычно в виде крепких кусковых руд. Он содержит: 55 – 60 % Fe, 0,02 – 2,5 % S, 0,02 – 0,7 % Р и обычно кислую пустую породу (SiO2 , Al2 О3). Магнетит характеризуется высокой магнитной восприимчивостью, и поэтому магнитные железняки можно обогащать электро-магнитным способом.

    Производство чугуна

    Необходимое оборудование

    Для производства чугуна необходима огромная доменная печь. Габаритные размеры такой печи впечатляют: высота 30 метров, внутренний диаметр 12 метров.

    • Самая широкая часть доменной печи носит название – распар.
    • Нижнюю часть называют горном (через нее в печь попадает горячий воздух).
    • Самая верхняя часть доменный печи называется шахта. Она имеет верхнее отверстие, которое носит название калашник. Калашник закрывается специальным затвором.

    В основе работы доменной печи лежит противоток. Воздух подается снизу, а материалы (кокс, флюсы и руда) заправляются сверху. Кокс необходим для нагрева, расплавления и восстановления руды. Без флюса не сможет образоваться шлак. А руда – это основное сырье для производства чугуна.

    Кроме доменной печи для производства чугуна обязательно потребуются:

    • вагонетки,
    • специальный кран,
    • бункеры,
    • транспортеры
    • и другое, в условиях металлургического завода.

    Сырье

    Совокупность веществ

    В состав железной руды входит рудное вещество и пустая порода, которая состоит: из песчаника с примесью глинистых веществ, из кварцита, из известняка и из доломита. Под рудным веществом подразумевают карбонаты железа, окислы и силикаты.

    В руде может присутствовать разное количество рудного вещества. В зависимости от этого она бывает богатая и бедная. Бедную руду отправляют на обогащение, а богатую сразу используют в производстве.

    Железные руды бывают нескольких видов:

    1. Бурый железняк. В состав входит железо в форме водных окислов. Общее процентное содержание железа составляет 25-50%. Пустая порода такого железняка может быть кремнисто-глиноземной и отличаться глинистостью.
    2. Красный железняк. Материал имеет второе название – гематит. Железо в структуре этого железняка представлено в форме безводной окиси. В таком железняке очень мало вредных примесей, а самого железа содержится 45-55%. Цвет руды располагается в диапазоне от темно-красного до темно-серого.
    3. Магнитный железняк. Железо представлено в форме закиси-окиси и составляет от общего количества 30-37%. У такой руды черный или темно-серый цвет. Пустая порода представляет собой кремнеземистую массу с другими окислами.
    4. Шпатовый железняк. Имеет второе название сидерит. Цвет у этого вещества грязно-серый или желтовато-белый. Этот материал легко поддается восстановлению. Железняк достаточно легко окисляется и переходит в форму бурого известняка. Железо в шпатовом железняке представлено в форме углекислой соли.
    Читать еще:  Классификация углеродистых сталей по содержанию углерода

    В процессе производства чугуна используются марганцевые руды. Их закладывают в шихту для увеличения в чугуне количества марганца.

    О том, какие вещества являются сырьем для производства чугуна, читайте ниже.

    Железные руды

    Железные руды представляют собой горные породы, из которых при данном уровне развития техники, экономически целесообразно извлекать железо. Верхняя зона земной коры мощностью около 16 км содержит в среднем 4,9% Fe, входящего в состав более 350 минералов горных пород. Такие широко распространенные горные породы как гранит, базальт содержат 3 – 9% Fe. Однако, в настоящее время столь бедные железом породы, пока не используются. Железо в земной коре в чистом виде не встречается, а находится обычно в соединениях с кислородом, так как обладает сравнительно большим сродством к кислороду.
    В природе в большинстве случаев, железо встречается в виде:

    • магнитной окиси железа Fe3 О4 (магнитный железняк или магнетит);
    • безводной окиси железа Fe2 O3 (красный железняк или гематит);
    • водной окиси железа Fe2 O3 ⋅ nH2 O (бурый железняк или гетит);
    • соединения железа с двуокисью углерода FeСO3 .

    Безводная окись железа

    Безводная окись железа в рудах представлена минералом гематитом. Руду, содержащую в основном гематит называют красным железняком, являющимся продуктом выветривания магнитных железняков или в значительной степени окисленным магнетитом. Руды бывают кусковатые, иногда пылевидные. В плотных породах цвет гематита меняется от стального до стально-черного. Для пылевидных руд характерен красный цвет. Красный железняк содержит 50 – 60% Fe, и обычно в таких рудах содержится мало серы и фосфора. Пустая порода таких руд обычно состоит из SiO2 и Al2 O3.

    Водная окись железа

    Водная окись железа представлена в рудах обычно минералами лимонитом или гетитом. Руды, содержащие эти минералы называются бурыми железняками (общая формула Fe2 O3 ⋅ nH2 O). Бурый железняк образуется при окислении железных руд других типов. Он наиболее распространен в земной коре, но используется сравнительно в небольшом количестве, так как трудно поддается обогащению. В добываемых рудах обычно содержится 25 – 50% Fe и повышенное количество фосфора (0,5 – 1,5% Р). Состав руды бывает разнообразен не только в различных, но и в пределах одного месторождения.

    Бурые железняки, наиболее легко восстанавливаемые руды, благодаря малой плотности и большой пористости. В большинстве случаев руды загрязнены вредными примесями – фосфором, серой, мышьяком. Пустая порода глинистая, иногда кремнисто-глинистая.

    Краткие сведения о производстве чугуна и стали

    В этой статье речь пойдет о сложном процессе производства чугуна и стали в современном производстве.

    Выплавка чугуна и стали

    Современное металлургическое производство чугуна и стали состоит из сложного комплекса различных производств (рис. 22):

    1. Шахт и карьеров по добыче руд, каменных углей, флюсов, огнеупорных материалов.
    2. Горно-обогатительных комбинатов, на которых подготовляют руды к плавке, обогащают их, удаляя часть пустой породы, и получают концентрат – продукт с повышенным содержанием железа по сравнению с рудой.
    3. Коксохимических цехов и заводов, на которых осуществляют подготовку коксующихся углей, их коксование (сухую перегонку при температуре

    1000°С без доступа воздуха) в коксовых печах и попутное извлечение из них ценных химических продуктов: бензола, фенола, каменноугольной смолы и др.

  • Энергетических цехов для получения и трансформации электроэнергии, сжатого воздуха, необходимого для дутья при доменных процессах, кислорода для выплавки чугуна и стали, а также очистки газов металлургических производств с целью охраны природы и сохранения чистоты воздушного бассейна.
  • Доменных цехов для выплавки чугуна и ферросплавов.
  • Заводов для производства различных ферросплавов.
  • Сталеплавильных цехов – конвертерных, мартеновских, электросталеплавильных для производства стали.
  • Прокатных цехов, в которых нагретые слитки из стали перерабатываются в заготовки (блюмы и слябы) и далее в сортовой прокат, трубы, лист, проволоку и т. п.
  • Современное производство стали основано на двухступенчатой схеме, которая состоит из доменной выплавки чугуна и различных способов последующего его передела в сталь. В процессе доменной плавки, осуществляемом в доменных печах, происходит избирательное восстановление железа из его окислов, содержащихся в руде. Одновременно с этим из руды восстанавливаются также фосфор и в небольших количествах марганец и кремний; происходит науглероживание железа и частичное насыщение его серой топлива (кокса). Таким образом из руды получают чугун – сплав железа с углеродом более 2,14%, кремнием, марганцем, серой и фосфором.

    Передел чугуна в сталь осуществляют в металлургических агрегатах: в конвертерах, мартеновских и электрических печах. В них из-за ряда происходящих химических реакций осуществляется избирательное окисление примесей чугуна и перевод их в процессе плавки в шлак и газы. В результате получают сталь заданного химического состава.

    Рис. 22. Схема современного металлургического производства

    Продукция черной металлургии

    Основной продукцией черной металлургии являются передельный чугун, литейный чугун, доменные ферросплавы, стальные слитки и прокат.

    Передельный чугун, используемый для передела на сталь, содержит 4,0-4,4% С; до 0,6-0,8%. Si; до 0,25-1,0% Мп; 0,15-0,3% Р и 0,03-0,07% S. Некоторые марки чугуна, предназначенные для передела в сталь в конвертерах, имеют пониженное до 0,07% содержание фосфора. До 90% всего выплавляемого чугуна приходится на чугун передельный.

    Литейный чугун, предназначенный для производства фасонных отливок способами литья на машиностроительных заводах, имеет повышенное содержание кремния (до 2,75-3,25%).

    Ферросплавы – сплавы железа с повышенным содержанием марганца, кремния, ванадия, титана и других металлов. Их применяют для раскисления и производства легированных сталей. К ферросплавам, относят доменный ферросилиций, содержащий 9-13% Si и до 3% Мп; доменный ферромарганец, содержащий 70-75% Мп и до 2% Si; зеркальный чугун с 10-25% Мп и до 2% Si.

    Стальные слитки, полученные в изложницах или кристаллизаторах, подвергают обработке давлением (прокатке, ковке). Прокат используют непосредственно в конструкциях (мостах, зданиях, железобетонных конструкциях, железнодорожных путях, станинах машин и т. д.), в качестве заготовок для изготовления деталей резанием и заготовок для последующей ковки и штамповки.

    Форму поперечного сечения прокатанного металла называют профилем. Совокупность различных профилей разных размеров называют сортаментом. Сортамент прокатываемых профилей разделяют на следующие группы: заготовки, сортовой прокат, листовой прокат, трубы и специальные виды проката.

    Заготовки прокатывают в горячем состоянии непосредственно из слитков. Заготовки квадратного сечения с размерами от 150х150 до 450х450 мм называют блюмами. Они предназначены для последующей прокатки на сортовых станах и в качестве заготовок для изготовления поковок ковкой. Заготовки прямоугольного сечения толщиной 65-300 мм и шириной 600-1600 мм называют слябами. Их используют для прокатки толстых листов.

    Сортовой прокат по профилю подразделяют на две группы: простой геометрической формы (квадрат, круг, шестигранник, прямоугольник) и сложной – фасонной формы (швеллеры, двутавровые балки, рельсы, уголки и т. д.).

    Листовой прокат подразделяют по назначению (судостроительный, электротехнический, автолист и т. д.) и по толщине. Листовую сталь с толщиной 4-160 мм называют толстолистовой, а с толщиной 0,2-4 мм – тонколистовой. Листы с толщиной менее 0,2 мм называют фольгой.

    Трубы также подразделяют по назначению и способу изготовления. Они бывают бесшовные и сварные (с прямым и спиральными швами).

    Специальные виды проката – колеса и оси железнодорожных вагонов, кольца, зубчатые колеса, периодические профили и т. п. Периодическим профилем называют прокатанную заготовку, форма и площадь сечения которой периодически изменяются вдоль оси.

    Побочными продуктами металлургического производства являются коксовальный газ и извлекаемые из него ценные химические продукты, а также доменный шлак и колошниковый газ. Доменным шлаком называют легкоплавкое соединение флюса (СаС03 – известняк) с пустой породой руды и золой топлива. Шлак используют для строительства дорог, из него изготовляют шлаковату, шлакоблоки, цемент, а колошниковый (доменный) газ после очистки от пыли используют как топливо для нагрева воздуха, вдуваемого в доменную печь, а также в цехах металлургических заводов.

    Современное металлургическое производство все более развивается по пути внедрения малоотходных и безотходных технологических процессов.

    Производство чугуна и стали

    СУЩНОСТЬ ДОМЕННОГО ПРОИЗВОДСТВА

    В металлургии черных металлов чугун занимает особо важное место, являясь первичным продуктом для переработки его в сталь и для производства чугунного литья.

    Основным способом получения чугуна является доменный процесс. Он ведется в доменных печах и заключается в восста­новлении из руды железа и других примесей при помощи окиси углерода и твердого раскаленного углерода и последующем науглероживании и плавлении его.

    Электродоменный процесс применяется только в странах, об­ладающих значительным запасом дешевой электроэнергии. Получение синтетического чугуна из стального лома с углеродосодержащими материалами производится в электрических печах очень редко.

    Успешный ход доменного процесса обеспечивают два основ­ных условия:

    1) количество тепла и температура по высоте печи должны быть распределены так, чтобы все реакции протекали в определенном месте и в определенное время;

    2) образование шлака должно происходить только после окончания восстановле­ния из руды железа и необходимых примесей.

    Первое условие обеспечивается непрерывным движением в печи двух встречных потоков: поднимающихся снизу вверх го­рячих газов от сгорания в горне топлива и опускающихся сверху вниз шихтовых материалов, нагревающихся и плавящихся под действием тепла газов.

    Второе условие обеспечивается подбором по тугоплавкости шлаков соответственно сортам выплавляемого чугуна, чтобы образовавшийся шлак не сплавил руду до восстановления железа и других примесей, не изменил заданного состава чугуна и не вы­звал расстройство в ходе процесса.

    Горение топлива.Горячий воздух, вдуваемый через фурмы, сжигает углерод кокса по реакции:

    С+02=С02+94052кал, (1)

    но при движении газов вверх СО2встречает углерод раскален­ного кокса и разлагается по реакции:

    Одновременно с этим идет реакция восстановления водорода из пара, содержащегося в дутье:

    Восстановление железа из рудыначинает происходить при по­мощи окиси углерода (непрямое восстановление) в верхних гори­зонтах печи и идет в следующем порядке:

    прямое восстановление идет и при более высоких темпера­турах

    В современных экономично работающих печах примерно 60% железа восстанавливается газами и 40% — твердым углеродом.

    Науглероживание железа,т. е. образование карбида железа, в условиях доменной печи начинается при 400—500°С при по­мощи окиси углерода по реакции:

    ЗFеО+5СО =Fе3С + 4С02- 58028кал(18)

    и продолжается при более высоких температурах

    Плавление науглероженного железаначинается при темпера­туре, близкой к 1140°С, когда содержание углерода в нем дости­гает 4,3%, и должно заканчиваться в шахте печи до того, как начнет плавиться пустая порода.

    Шлакообразование,т. е. сплавление пустой породы руды с флюсом, в печи при температуре около 1200°С.

    РАБОТА ДОМЕННОЙ ПЕЧИ

    Доменная печь работает Круглые сутки непрерывно в течение пяти — восьмилетнего периода, называемого кампанией.

    В начале кампании печи или при задувке проверяются все устройства ее, опробуется оборудование, производится сушка и разогрев кладки, готовится и грузится задувочная шихта из отборных материалов и производится задувка в течение 4—5 су­ток. Горючие материалы в горне, зажигаются горячим воздухом с температурой около 600°С. Дутье дается постепенно.

    Первый выпуск шлака производится обычно через 15 часов, а чугуна — через сутки после задувки. Нормальная производительность печи до­стигается, как правило, на шестые-седьмые сутки.

    Выпуск чугуна и шлака производится по графику: чугун 6 раз в сутки через каждые 4 часа, а шлак через 1,5—2 часа по мере накопления. Чугун и шлак выпускаются в ковши чугуновозов и шлаковозов, подаваемых под соответствующие желобы печи.

    В зависимости от характера использования чугуна его подают либо в сталеплавильный цех для использования в жидком состоя­нии, либо ‘на разливочную машину для отливки чугунных чу­шек.

    В сталеплавильных цехах чугун чаще всего заливают непо­средственно в миксеры емко­стью до 1500 т, отапливаемые доменным газом. Служит миксер для выравнивания хими­ческого состава и температуры чугуна, а также для удаления из него серы.

    СУЩНОСТЬ ПРОИЗВОДСТВА СТАЛИ

    Сталь, как и чугун, представляет собой сплав железа с угле­родом и с другими примесями, но отличается от него меньшим содержанием их. Это обусловливает коренную разницу в процес­сах получения их: если процесс получения чугуна по преимуще­ству восстановительный, то процесс получения стали из чугуна окислительный. Он сводится к окислению примесей чугуна до нужных пределов при помощи чистого кислорода или кислорода воздуха или руды.

    Все процессы в плавке стали обусловлены известными поло­жениями физической химии:

    1) реакции идут в строгой последовательности в зависимости от температуры металла и шлака: при низких температурах идут экзотермические реакции, при повышении температуры — реакции с выделением малого количества тепла и при высоких температурах — эндотермические реакции;

    2) скорость реакции пропорциональна концентрации дейст­вующих друг на друга масс, т. е. определяется процентным со­держанием веществ в металле и в шлаке, а также температурой и химическим сродством;

    3) вещество, растворенное в металле и в шлаке, распределя­ется между ними так, что процентное содержание его в каждом из них при определенных температурах является постоянным;

    4) всякая система, находящаяся в состоянии химического равновесия, на все процессы, действующие извне, отвечает воз­никновением внутри системы процессов, стремящихся уничто­жить результаты внешнего воздействия.

    В далекие доисторические времена сталь получали в тесто­образном состоянии непосредственно из руд в примитивных сы­родутных горнах. Позднее в таком же состоянии сталь получали из чугуна в кричных горнах, а с 1784 г. — в пудлинговых печах. Это были малопроизводительные, физически тяжелые, требую­щие большого расхода топлива и дорогостоящие способы. В по­исках новых, более производительных и экономичных способов,были последовательно открыты способы получения стали в жид­ком состоянии: бессемеровский (1855 г.), мартеновский (1865 г.), томасовский (1878г.) и электрометаллургический (1900г.).

    Плавка стали при бессемеровском процессе, открытом Генри Бессемером в 1855—1856 гг., ведется в конвертерах.

    Сущность процессазаключается в том, что кислород воздуха, продуваемого через жидкий чугун, окисляет его примеси и при интенсивно идущих реакциях образуется такое количество тепла, которого без подвода извне вполне достаточно для превращения чугуна в сталь в течение 10—12мин.Исходным материалом служит бессемеровский чугун, содержащий 0,7—1,75% кремния, 0,5—1,2% марганца и не более 0,07% фосфора и 0,04—0,06% серы.

    Невозможность передела бессемеровским способом чугунов с повышенным содержанием фосфора и серы, ограничила распространение его в ряде стран. Проблему переработки фосфористых чугунов в сталь, разре­шил С. Д. Томас, применив в конвертере вместо кислой, основ­ную футеровку из обожженного доломита, связанного обезво­женной каменноугольной смолой, и известь для образования шлака и связывания фосфорного ангидрида.

    Конструкция томасовского конвертера принципиально не от­личается от бессемеровского, за исключением материала футе­ровки.

    В мировой выплавке стали главная роль принадлежит мар­теновскому производству. В нашей стране около 90% стали вы­плавляется в мартеновских печах. Причинами столь широкого распространения этого процесса являются: неприхотливость в выборе шихтовых материалов, легкость управления и контроля за ходом плавки вплоть до автоматизации, возможность вы­плавки самой разнообразной по качеству, назначению и по сор­там стали, легкая приспособляемость к любым условиям и мас­штабу производства.

    Начало мартеновского процесса относится к 1865 г., когда П. и Э. Мартены во Франции построили 1,5-тонную регенератив­ную печь и получили в ней сталь удовлетворительного качества из стального лома и чугуна.

    Мартеновский процесс заключается в расплавлении шихты, снижении в ней содержания углерода, кремния, марганца, удалении нежелательных примесей ( S,P) и введении недостающих элементов (легирование). Температура в печи должна обеспечивать пребывание металла в жидком состоянии; к концу плавки она должна составлять 1600 – 1650 0 С. Для связывания шлаков добавляют флюс (известнякCaCO3). Избыток кислорода удаляют раскислением, вводяMnилиSi.

    Мартеновская печьявляется регенеративной печью. В ней высокая температура для выплавки стали достигается тем, что участвующие в горении газ и воздух (или только воздух) нагре­ваются до 1100—1300° теплом отходящих газов в регенераторах.

    Исходными материаламив мартеновском процессе являются чугун и стальной лом (скрап).

    Стальной лом (скрап) сортируют по составу с целью отделе­ния легированных отходов и сплавов цветных металлов во из­бежание потерь их при плавке.

    В зависимости от местных условий плавку ведут на шихте с различным соотношением в ней чугуна и стального лома, что предопределяет главные разновидности процесса.

    /. Скрап-рудный процесс,в котором 60—70% шихты состав­ляет чугун, а остальную часть стальной лом, ведется на метал­лургических заводах с собственным доменным производством.

    2. Скрап-процесс,в котором шихта составляется из 30—50% привозного чугуна и 70—50% стального лома, применяется на машиностроительных и металлургических заводах, не имеющих своего доменного производства. Отличается этот процесс от скрап-рудного процесса только методами завалки и плавления шихты.

    3. Рудный процесс,в котором плавка ведется только на од­ном жидком чугуне без стального лома, в настоящее время не применяется по технической нецелесообразности и экономиче­ской невыгодности.

    4. Карбюраторный процесс,в котором плавка ведется исклю­чительно на стальном ломе, а чугун заменен антрацитом, камен­ноугольным, нефтяным или торфяным коксом, ведется только в случаях острого недостатка или полного отсутствия чугуна на заводах. Производительность печей при этом процессе снижа­ется на 25—40%, а металл получается более низкого качества.

    ПРОИЗВОДСТВО СТАЛИ В ЭЛЕКТРИЧЕСКИХ ПЕЧАХ

    Основные преимущества производства стали в электрических печах, заключаются в следующем:

    1) в возможности получения самых высококачественных сталей и тугоплавких сплавов с минимальным количеством га­зов, вредных примесей и неметаллических включений;

    2) гибкость работы при всех режимах и характерах произ­водства с использованием твердой и жидкой завалки с любым количеством дешевого стального лома;

    3) в самом малом угаре металла и особенно легирующих примесей по сравнению со всеми плавильными агрегатами;

    4) в простоте устройства, компактности, легкости обслужи­вания и относительной дешевизне печей.

    Исходные материалы.Основными материалами для плавки являются стальной лом, отходы и специальные заготовки.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector