E-polirovka.ru


2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Используется для переработки в сталь литейный чугун

Переработка чугуна в железо и сталь

В настоящее время применяются два главных способа переработки чугуна в железо и сталь. Оба они основаны на окислении содержащихся в чугуне примесей.

Бессемеровский способ заключается в продувании сквозь расплавленный чугун сильной струи воздуха.

Бессемерование производится в огромных грушевидных железных сосудах, так называемых конверторах (рис. 155), выложенных изнутри кирпичом из кремнезема и вмещающих до 40—50 т чугуна. Конвертор может вращаться на горизонтальных цапфах при помощи зубчатого колеса. Ко дну конвертора, в котором находится много мелких отверстий, приделана воздушная камера для нагнетания воздуха. Конвертор наполняют расплавленным чугуном, а в воздушную камеру нагнетают воздух. Проходя через отверстия в дне конвертора, воздух пронизывает всю массу чугуна и окисляет примеси. Прежде всего выгорают, переходя в шлак, кремний и марганец, затем уже и углерод. Весь процесс бессемерования продолжается 10—20 мин., после чего конвертор можно опорожнить, повернув его отверстием вниз.

Бессемеровским способом получается железо, содержащее менее 0,3% углерода. Если желают получить сталь, то или заканчивают продувание воздуха раньше, пока еще не весь углерод чугуна. Получение малоуглеродистых сталей связано с еще большими потерями железа. Кроме того, вследствие сильного продувания воздуха в железо попадает часть шлаков, которые остаются в нем при остывании и понижают качество получаемого металла.

Более совершенным является мартеновский способ, при котором переработка чугуна производится в регенеративных печах.

В печи сплавляют чугун вместе с железным ломом и некоторым количеством руды. Выгорание примесей происходит отчасти за счет кислорода воздуха, поступающего в печь вместе с горючими газами, отчасти за счет кислорода прибавленной

В регенеративных печах можно применять как кислую обкладку печи из кремнезема, так и основную из извести. Добавляя к чугуну железный лом и руду в той или иной пропорции, можно получать сталь с любым содержанием углерода, обладающую более высокими качествами, чем бессемеровская.

Производительность мартеновских печей характеризуется количеством стали, получаемой за сутки с 1 м 2 пода печи. Раньше считалось, что четыре тонны с метра в сутки — это высший предел, до которого может быть доведена производительность печи. Однако опыт передовых рабочих и инженеров наших заводов показал, что мартеновские печи могут работать гораздо более производительно. В настоящее время суточный съем стали с 1 м 2 пода печи составляет в среднем 7,2 т.

В последнее время для выплавки стали широко используются электрические печи. Источником тепла в этих печах служит электрическая энергия, вследствие чего процесс выплавки значительно упрощается и создаются благоприятные условия для регулирования режима плавки. Наиболее распространены печи, в которых нагревание производится при помощи электрической дуги, причем легко достигается температура в 2000° и выше. Самый процесс выплавки стали в электрической печи почти не отличается от мартеновского процесса, но благодаря возможности точно регулировать температуру печи, а следовательно, и течение процесса сталь получается более высокого качества. Таким путем получают инструментальную сталь и различные специальные сорта стали.

При получении особо важных сортов стали для ответственных деталей и инструментов прибегают к так называемой тигельной плавке. Смесь различных сортов стали и специальных добавок загружают в тигли, которые накрывают крышками и затем устанавливают на под пламенной печи типа мартеновской, где происходит плавление смеси и получается сталь определенного сорта.

В настоящее время научная и техническая мысль работает также над разрешением проблемы получения железа методом прямого восстановления из руд при умеренных температурах. Для получения железа по этому методу измельченную железную руду восстанавливают углем или газами при 800—1000°, а затем, после отделения на магнитном сепараторе части пустой породы и золы восстановителя, перерабатывают полученное рыхлое железо в мартеновских или электрических печах на сталь. Для восстановления может быть применено любое твердое или газообразное топливо. Сталь, выплавленная из восстановленного железа, отличается высокими механическими качествами. Однако существующие установки по прямому получению железа из руд пока еще очень несовершенны и громоздки, что ограничивает применение этого метода.

Вы читаете, статья на тему Переработка чугуна в железо и сталь

Передельный чугун: технические условия

Для того чтобы перейти к рассмотрению передельного чугуна, необходимо разобраться в общем составе этого продукта и его качествах. Итак, чугуном называют сплав, который состоит из такого материала, как железо, углерод и несколько других примесей.

Общее описание чугуна

В зависимости от примесей, использующихся для плавки чугуна, меняются и его свойства. Однако есть и те особенности, которые должны поддерживаться в любом случае. Одна из них — это массовая доля углерода в составе. Этот параметр должен быть не менее чем 2,14 %. Если показатель содержания углерода будет ниже, то это уже не чугун, а сталь. Здесь важно понимать, что как такового обычного чугуна не производится. В процессе получения этого материала в конце операции всегда добавляются присадки двух видов, по которым и происходит разделение на литейный или передельный чугун. Одна из особенностей этого сырья также заключается и в том, что температура, необходимая для его плавки, на 250-300 градусов выше, чем для стали. Чтобы расплавить это вещество, требуется температура в 1200 °С.

Как получают чугун?

Здесь сразу стоит отметить, что производство передельного чугуна или обычного — это практически идентичные процессы, а потому описывать оба не имеет смысла. Рассмотрим лишь общую технологию плавки.

Итак, чтобы получить данное вещество, необходимо потратить большое количество ресурсов. Основным рабочим сырьем является кокс и вода. Для того чтобы удалось выплавить тонну передельного чугуна, нужно взять примерно 550 кг кокса или около 900 л воды. Количество руды, которую потратят на переработку, определить точно для каждой партии невозможно, так как ее расход полностью зависит от процентного содержания железа. Однако абсолютно любую руду использовать невыгодно, если смотреть с точки зрения экономики. По этой причине применяется сырье, которое содержит от 70 % железа в своем составе и более. Также важно отметить, что перед плавкой руда обогащается, а только после поступает в доменную печь, именно в них происходит процесс получения чугуна. Электрические печи выплавляют лишь 2 % от общего количества материала.

Первый этап

Весь процесс плавки разделяется на несколько этапов, связанных между собой.

Процедура начинается с того, что в топку печи загружают руду, в составе которой есть магнитный железняк. Кроме того, можно использовать руду, в составе которой имеется водная окись железа или его соль. Вместе с загрузкой рабочего минерала в печь загружаются и коксующиеся угли. Их основная задача — это поддержание высоких показателей температуры. Для того чтобы быстрее расплавить руду и получить доступ к железу, в топку отправляется флюс. Вещество, являющееся катализатором, способствует более быстрому распаду руды.

Здесь важно отметить, что перед загрузкой в печь руда обычно проходит процесс дробления, промывки, сушки. Все эти этапы способствуют удалению лишних примесей, а также увеличению скорости плавки.

Второй этап

Ко второму этапу плавки передельного чугуна приступают тогда, когда в доменную печь были загружены все необходимые материалы. Запускаются горелки, которые подогревают кокс, а тот разогревает руду. Важно знать, что при разогреве кокс начинает выбрасывать в воздух углерод, который проходит по нему, вступает в реакцию с кислородом и образует оксид. Данное летучее вещество принимает активное участие в восстановительных процессах. Однако этот процесс протекает лишь до тех пор, пока в печи остается воздух. Чем больше газа внутри домны, тем слабее этот эффект, а с течением времени он и вовсе прекращается. Когда этот момент наступает, то весь газ, имеющийся внутри печи, уходит, чтобы поддерживать высокую температуру внутри агрегата.

Читать еще:  Гальванизированная сталь что это такое?

Весь избыток углерода смешивается с расплавленным веществом, поглощается железом, что и образует чугун. Все элементы, которые не расплавились в процессе плавки, всплывают на поверхность, откуда они удаляются. После завершения этого процесса очистки наступает момент, когда в расплавленное сырье добавляют различные присадки. Какой именно в итоге получится чугун зависит от того, какой вид присадок будет применяться.

Какие чугуны передельные?

Если более подробно рассматривать именно передельное вещество, то можно отметить несколько отличительных качеств. Во-первых, содержание марганца и кремния в составе гораздо ниже, а во-вторых, оно используется для получения стали кислородно-конверторным способом. Если говорить о литейном чугуне, то он используется для производства самой разной продукции. Здесь также важно отметить, что весь материал, относящийся к этой группе, делится на несколько типов.

Далее следует знать, что в зависимости от своего состава передельный чугун разделяется на классы:

  • П1 и П2 — это маркировка обычного переделочного вещества;
  • ПФ1, ПФ2 и ПФ3 — это фосфористое сырье;
  • ПВК1, ПВК2 и ПВК3 — это группа высококачественного чугуна;
  • чугун передельный ПЛ 1 и ПЛ2 — это категория материалов, относящихся к литейному производству.

Для примера можно рассмотреть содержание этих веществ в сырье, имеющем средний показатель качества. Содержание Si от 0,2 до 0,9 %, Mn от 0,5 до 1,5 %, Р не более 0,3 %, S не более 0,06 %.

Особенности химического состава

Если рассматривать химический состав, требуемый техническими условиями, то нужно отметить важную особенность. Основное предназначение передельного чугуна — это переплавка в сталь, а потому требования к его качеству и составу определяются сталеплавильными процессами.

Одной из слабых сторон такого технологического процесса стало то, что он не в состоянии справится с такой примесью, как сера. А так как основная разница между чугуном и сталью в содержании углерода, то становится ясно, что основная задача, которая должна быть выполнена, это удаление углерода из состава. Для того чтобы достичь этой цели, необходимо чтобы химический состав позволял провести процесс окисления. Именно при помощи окисления углерода он удаляется из передельного чугуна.

Однако здесь необходимо понимать, что при окислении углерода под воздействие попадут и другие примеси — кремний, марганец, в меньшей степени — железо. Полученные вещества в ходе этого процесса называют оксидами, после чего их переносят в разряд шлака. Конечным продуктом такой индустрии становится железистый шлак — это отходы с повышенным содержанием железа, которые существенно затрудняют удаление серы из состава. По этой причине массовая доля элемента S должна быть минимальна в составе передельного чугуна.

Переработка в других устройствах

В зависимости от того, каким именно методом чугун перерабатывался в сталь, будут предъявляться и разные технические условия к составу.

Использовав кислородно-конверторное устройство, можно избавиться от такой примеси как фосфор. Чем выше массовая доля этого элемента, тем выше хладноломкость сырья (растрескивание при низких температурах).

Если взять, к примеру, мартеновские печи, то в них можно переплавить чугун в сталь практически любого вида. Однако здесь важно следить за количественным содержанием фосфора и кремния. Чем выше массовая доля этих элементов, тем дороже будет процесс переделки. К тому же сильно увеличивается и время, необходимое на завершение работы. По этой причине в составе материала их содержание не должно превышать средних значений по технической документации. Стоит отметить, что содержание марганца в передельном чугуне не лимитируется. Это объясняется тем, что он способствует процессам, связанным с удалением серы.

Передельный литейный чугун характеризуется тем, что содержание кремния в нем выше — до 1,2 %.

Государственный стандарт

Как и в случае с другими промышленными материалами, чугун должен изготавливаться по строгим правилам, описанным в государственном стандарте. Для передельного чугуна — ГОСТом 805-95 устанавливаются все технические условия, по которым он должен создаваться. Регламентируется количественное содержание всех химических элементов в каждой из групп.

Технические требования по ГОСТу

В документации указаны пункты, которые должны соблюдаться в любом случае, а есть те, которые устанавливаются потребителем при договоре с производителем.

К первой категории относятся следующие правила:

  1. Марки чугуна, относящиеся к ПЛ1 и ПЛ2, должны поставляться на места переработки с обязательным указанием массовой доли углерода в составе.
  2. Если передельный чугун выплавляется из руд, принадлежащим к медесодержащим, то массовая доля этого элемента в конечном итоге не должна превышать 0,3 %.
  3. Производство этого материала осуществляется в чушках, без пережимов, с одним пережимом или двумя пережимами максимум. В местах пережима толщина чушки (слитка) не должна превышать 50 мм.
  4. Масса чушки не должна превышать такие значения, как: 18, 30, 45, 55 килограммов.
  5. На поверхности этих агрегатов не должно быть каких-либо остатков шлака.

Требования потребителя

ГОСТ 805 для передельного чугуна также регламентирует несколько технических требований, которые потребитель вправе установить при заказе у производителя. К ним относятся следующие пункты:

  1. Марки передельного чугуна, относящиеся к ПЛ1 и ПЛ2, должны изготавливаться с массовой долей углерода в составе от 4 до 4,5 % включительно.
  2. Если рассматривать эти же марки ПЛ1 и ПЛ2, которые впоследствии будут использоваться для изготовления отливок из чугуна с шаровидным графитом, то массовая доля хрома в таком веществе не должна превышать 0,04 %. Также при изготовлении высококачественного передельного чугуна по ГОСТ, для дальнейшего производства поршневых колец, следует ограничить содержание марганца до 0,3 %, а хрома до 0,2 %.
  3. Если нет специальных заявок, то обычный передельный и высококачественный материал должен изготавливаться с содержанием марганца более 1,5 %. Если производится передельный чугун фосфористой группы, то содержание фосфора более 2 %.
  4. Массовая доля кремния в таких марках, как ПЛ1, ПФ1 и ПВК1, должна быть более 1,2 %.
  5. Очень важный пункт — это содержание серы, которое допускается не более 0,06 % в типах чугуна П1, П2 и ПЛ1, ПЛ2.

Приемка и контроль качества

В документе также установлены правила приемки товара и операции по контролю качества.

Прием этого материала разрешается осуществлять только партиями. Партией считается чугун, принадлежащий к одной марке, группе, типу и виду, а также имеющий документ, который подтверждает качество продукции. Чаще всего в таких бумагах указывают: товарный знак предприятия, которое изготавливало продукт; наименование предприятия, выступающего в роли потребителя; марку, группу, класс и категорию чугуна, штамп контроля и еще несколько пунктов.

Если говорить о методах контроля, то здесь необходимо проверять качество чешуек. Для этого использовать увеличительные приборы необязательно. Для того чтобы провести контроль качества, касающийся чешуек, используется тот метод, который был оговорен между потребителем изделия и производителем. Если масса партии до 20 тонн, то отбирают 10 проб чешуек с разных мест. Если масса превышает 20 тонн, то необходимо отобрать 20 проб с поверхности чугуна.

Структурное качество

Стоит добавить, что существует особое разделение чугуна на такие виды, как: белый, серый, ковкий, высокопрочный. Деление на типы осуществляется в зависимости от структуры материала.

К примеру, к категории белого чугуна относится та партия материала, в которой весь углерод пребывает в химически связанном состоянии, а также имеет вид цементита. Из-за наличия этого вещества окраска чугуна становится белой, откуда и название.

Если говорить о сером чугуне, то здесь основное отличительное качество — это углерод, который представлен в виде графита с формой изогнутых пластин или же чешуек. Из-за большого количества этих элементов, излом чугуна обладает серым цветом. Сплав железа с углеродом производят в больших количествах в Китае, Японии, России, Индии, Южной Корее, Украине.

Читать еще:  Сталь a351 cf8m Российский аналог

Используется для переработки в сталь литейный чугун

Ключевые слова конспекта: производство чугуна, производство стали, железная руда, чугун, сталь, руда, кокс, силикат кальция, пирит, доменная печь.

ПРОИЗВОДСТВО ЧУГУНА. ДОМЕННАЯ ПЕЧЬ

По объёму производства и потребления железо является важнейшим металлом. Обычно железо используется в виде сплавов. Отрасль промышленности, производящая железо и его сплавы, – чёрная металлургия.

Источником получения железа является железная руда. В руде основными компонентами являются соединения железа:

  • Fe3O4 – магнетит (магнитный железняк),
  • Fe2O3 – гематит (красный железняк),
  • Fe2O3nH2O – лимонит (бурый железняк),
  • FeS2 – пирит (железный колчедан, серный колчедан).

Пирит сначала обжигают (в ходе производства серной кислоты), а огарок (Fe2O3) используют в производстве чугуна.

Продуктами производства являются чугун и сталь.

Чугун – сплав железа с углеродом, в котором массовая доля углерода составляет более 2%, а также имеются примеси кремния, фосфора, серы и марганца.

Производство чугуна осуществляют в доменных печах (см. рис). Сырьём для производства являются железная руда, кокс, известняк и горячий воздух.

Доменную печь загружают сначала коксом, а затем послойно агломератом и коксом. (Агломерат – это определённым образом подготовленная руда, спечённая с флюсом, в данном случае – с известняком.) Через специальные отверстия (фурмы) в нижнюю часть домны подаётся горячий воздух, обогащённый кислородом. В нижней части домны кокс сгорает, образуя СO2, который, поднимаясь вверх и проходя сквозь слои накалённого кокса, взаимодействует с ним и образует СО:

Руда последовательно претерпевает превращения:

В руде присутствует также пустая порода, которую образует главным образом кремнезём – SiO2. Это тугоплавкое вещество. Для превращения его в легкоплавкие соединения к руде добавляется флюс. Обычно это известняк. При взаимодействии его с кремнезёмом (SiO2) образуется силикат кальция:

СаСO3 + SiO2 = CaSiO3 + CO2(800 °С)

Образующийся силикат легко отделяется в виде шлака.

При восстановлении руды железо получается в твёрдом состоянии. Постепенно оно опускается в более горячую часть печи – распар – и растворяет в себе углерод. Образуется чугун. Последний плавится и стекает в нижнюю часть домны, а жидкие шлаки собираются на поверхности чугуна, предохраняя его от окисления. Чугун и шлаки периодически выпускают через особые отверстия.

Когда металлическое железо выделяется в жидком состоянии, в нём сравнительно хорошо растворяется углерод. При кристаллизации такого раствора образуется чугун – сплав железа с углеродом. Он обладает высокой хрупкостью из-за большого содержания в нём карбида железа Fe3C (цементита), который образуется в результате побочных реакций:

3Fe + С = Fe3C
3Fe + 2СО = Fe3C + СO2

В чугуне содержатся примеси фосфора, серы. Сера ухудшает текучесть чугуна и вызывает красноломкость стали – хрупкость при нагревании до температуры красного каления. Фосфор вызывает хладноломкость стали – хрупкость при обычной температуре.

ПРОИЗВОДСТВО СТАЛИ

Сталь – сплав железа с углеродом, в котором массовая доля углерода составляет менее 2%.

Сущность получения стали из чугуна заключается в уменьшении содержания углерода в металле и возможно более полном удалении примесей – серы и фосфора, а также в доведении содержания кремния, марганца и других элементов до требуемых пределов.

Существует несколько способов переработки чугуна в сталь : мартеновский, бессемеровский и томасовский. Они различаются методами окисления.

В бессемеровском и томасовском способах окисление осуществляется кислородом воздуха, продуваемого через расплавленный металл. Во всех процессах углерод, содержащийся в металле, окисляется до СО и СO2, удаляемых из реакционной зоны. Кремний Si, марганец Мn, хром Сг и другие металлы, окисляясь, переходят в шлак в виде SiO2, МnО и т. д.

Механизм процесса окисления может быть представлен следующим образом. В первую очередь окисляется часть железа. Часть образующихся оксидов растворяется в металле и взаимодействует с примесями:

С + FeO ⇆ Fe + СО
Si + 2FeO
⇆ 2Fe + SiO2
2
P + 5FeO ⇆ 5Fe + P2O5

Для максимального удаления примесей серы и фосфора необходимо, чтобы в процессе передела чугуна получались основные шлаки; это достигается путём добавления известняка или извести. Сера, содержащаяся в чугуне в виде FeS, реагирует с оксидом кальция СаО:

FeS + СаО = CaS + FeO

Образующийся сульфид кальция переходит в шлак. Образовавшийся P2O5 также взаимодействует с известью, образуя фосфат кальция, переходящий в шлак:

3СаО + P2O5 = Са3O4)2

Бессемеровский и томасовский способы осуществляют в конвертерах. Конвертеры – аппараты грушевидной формы, изготовленные из специальной котельной стали (кожух) и футерованные изнутри огнеупорными материалами.

Конспект урока по химии «Производство чугуна и стали. Доменная печь». Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по химии
  • Найти конспект в Кодификаторе ОГЭ по химии
  • Найти конспект в Кодификаторе ЕГЭ по химии

Чугун литейный

Помимо вышеприведенных для получения отливок используются и многие другие марки чугуна.

Чугуны для отливок различаются по структуре, химическому составу, назначению и технологии получения.

В зависимости от того, в каком виде формируется высокоуглеродистая фаза при кристаллизации или термической обработке по структуре, различают отливки: 1) из графитизированного чугуна, характеризуемого наличием в структуре свободного графита различной формы; 2) из белого чугуна (БЧ), характеризуемого отсутствием в структуре свободного графита (высокоуглеродистая фаза находится в виде цементита); 3) из половинчатого, отбеленного чугуна (0Ч). В последнем случае поверхностный слой отливки имеет структуру белого чугуна, а в центре — графитизнрованного серого чугуна.

Форма графита в графитизированных чугунах разнообразна: пластинчатая (ПГ), вермикулярная — червеобразная (ВГ), хлопьевидная (ХГ) и шаровидная (ШГ). Эти формы графита определяют основные типы чугунов: серый чугун (СЧ), чугун с вермикулярным графитом (ЧВГ), ковкий чугун (КЧ), высокопрочный чугун с шаровидным графитом (ВЧШГ). При этом структура металлической основы может быть от ферритной до аустенитной. Государственными стандартами регламентировано около 100 марок чугуна.

По химическому составу различают нелегированный и легированный чугун.

По назначению чугуны могут быть разделены на несколько укрупненных групп в зависимости от предъявляемых к отливке требований.

К укрупненным группам относятся отливки:

а) машиностроительные из серого чугуна, у которого наблюдаются характерные механические свойства, хорошая обрабатываемость, улучшенные литейные свойства, облегчающие получение отливок наиболее сложной конфигурации, и наибольшая дешевизна; в пределах данной группы могут быть выделены: отливки для станкостроения, для автомобилестроения, для тяжелого машиностроения, для электрической промышленности и т.д.;

б) с повышенной прочностью и вязкостью из высокопрочного или ковкого чугуна;

в) с повышенной поверхностной твердостью из отбеленного чугуна или подвергаемые поверхностной закалке;

г) с резко выраженными специальными свойствами из легированных чугунов.

По технологии получения различают отливки, получаемые в разовых песчаных формах, в оболочковых формах, в металлических формах (кокиль), в песчаных формах, изготовленных по газифицируемым моделям, в керамических формах, изготовленных по выплавляемым или выжигаемым моделям. Особенность технологического процесса в последних двух вариантах заклюй чается в отсутствии разъема формы и стержней. Модель из формы удаляется либо в процессе заливки формы металлом (газифицируемые модели), либо предварительно выплавляется или выжигается из керамической формы. Газифицируемые и выжигаемые модели изготовляют из полимеров (пенополистирол, полистирол), а выплавляемые — из легкоплавких составов на основе парафина, стеарина, церезина и др. Осваивается производство отливок из черных сплавов (в том числе из чугуна) литьем под давлением.

Целесообразный способ получения отливки зависит от типа производства, массы отливки, ее габаритных размеров и конструктивных особенностей.

Читать еще:  Марка стали напильника по металлу

Выбранный способ характеризуется определенными точностью и шероховатостью поверхности получаемых отливок.

Наиболее универсальным способом получения отливок, пригодным как для единичного, так и для массового производства отливок массой от десятков граммов до десятков тонн, является литье в разовые песчаные формы. В металлических формах получают разнообразные фасонные отливки массой от долей до 100 кг, хотя в отдельных случаях масса отливки составляет сотни килограммов (например, чугунные трубы, получаемые центробежным способом, и др.). При литье в металлические формы целесообразна серия для мелких отливок св. 400 шт., для крупных отливок св. 20 шт.

Литьем в оболочковые формы получают в основном коленчатые валы и ребристые цилиндры, станины электродвигателей, корпуса токарных патронов, нагревательные комфорки бытовых электроплит, детали различных двигателей, компрессоров, насосов, вентиляторов, текстильных машин, гидроаппаратуры, кондиционеров и т. д. Максимальные размеры отливок до 1000 х 1000 мм, масса отливок до 200 кг. Учитывая необходимость изготовления нагреваемой металлической оснастки, целесообразна серия не менее 300-500 шт.

Литьем по выплавляемым моделям изготовляют мелкие отливки сложной конфигурации массой до 1,5—2 кг, реже до 5—6 кг, для которых требуются повышенная точность и малые параметры шероховатости поверхности. При данном способе имеется возможность максимально приблизить заготовку по размерам и конфигурации к готовой детали. При использовании деревянных пресс-форм для изготовления моделей целесообразна серия 50— 100 шт., гипсовых — 200 шт., металлических — несколько тысяч.

Данные относятся к отливкам II— III группы сложности на размеры до 500 мм включительно, расположенных в одной части формы. Точность размеров, оформляемых в двух и более частях формы, а также отливок повышенной сложности и больших габаритов может быть ниже.

На характеристики точности отливок влияет их сложность, вид модельной оснастки. Например, при ручной и машинной формовке с использованием встряхивания и подпрессовки при обычных давлениях можно применить деревянную модельную оснастку, тогда как при прессовании форм с высоким давлением используют металлическую модельную оснастку, что отражается на себестоимости отливок и становится целесообразным лишь при их определенной серии (обычно не меньше нескольких сот штук).

Отливки, получаемые в песчаных формах, по выплавляемым моделям, под давлением делятся на шесть групп сложности, а отливки, получаемые в оболочковых формах, в кокиль или центробежным способом — на пять групп. Основными признаками при классификации являются геометрическая форма, конфигурация наружных поверхностей; конфигурация и характер расположения внутренних полостей отливок; технологические особенности изготовления. В качестве примера приведены конструктивные признаки отнесения отливок, получаемых в песчаных формах, к различным группам сложности,

Приведена ориентировочная точность чугунных отливок, изготовляемых в песчаных формах, в зависимости от группы сложности отливок и наибольшего габаритного размера.

Себестоимость отливок, кроме материала, их группы сложности и серии, определяется точностью, зависящей от применяемого способа изготовления, и в общем случае увеличивается с повышением точности отливок. Однако это увеличение может быть перекрыто экономией при дальнейшей механической обработке более точных литых заготовок, в результате уменьшения или ликвидации припусков на механическую обработку.

Цена отливок, получаемых в кокиль, более низкая по сравнению с отливками, полученными в песчаных формах. Однако это зависит от серийности выпуска отливок. С уменьшением серийности цена будет снижаться для отливок, изготовляемых в песчаных формах, и при единичном и мелкосерийном производстве литье в кокиль становится нецелесообразным, даже с учетом возможной выгоды, получаемой при механической обработке вследствие повышения точности отливок.

Производство, разливка и рафинирование стали

Сущность передела чугуна в сталь и ее разливка

На первом этапе передела чугуна в сталь в результате окислительных реакций углерод соединяется с кислородом, образуя оксид углерода СО, который удаляется из печи. Кремний, марганец, фосфор, сера образуют окислы или другие нерастворимые или малорастворимые в металле соединения (S1O2, MnO, CaS и др.), которые в процессе плавки частично удаляются в шлак. Однако в полной мере примеси окислить не удается, так как по мере снижения содержания примесей в соответствии с законом действующих масс начинает окисляться железо.

Химический состав низкоуглеродистой стали и передельного чугуна, %

Окислы железа растворяются в железе, насыщая металл кислородом. Сталь, содержащая кислород, непригодна для обработки давлением (ковка, прокатка), поскольку в ней образуются трещины при деформациях в нагретом состоянии.

В связи с этим для уменьшения содержания кислорода в стали в процессе плавки ее раскисляют, используя ферросплавы: ферросилиций, ферромарганец, а также алюминий. Взаимодействуя с кислородом, эти соединения и элементы образуют нерастворимые окислы, частично всплывающие в шлак. Раскисление является завершающим этапом выплавки стали.

Чугун переделывают в сталь в различных по принципу действия металлургических аппаратах. Основными из них являются кислородные конверторы, мартеновские и электроплавильные печи. Соотношение между способами производства стали меняется. Объем производства стали, выплавляемой в кислородных конверторах и крупных электропечах, возрастает, а получаемой в мартеновских печах — уменьшается.

Рафинирование металла в ковше жидкими синтетическими шлаками проводится для очистки стали от серы, растворенного кислорода и неметаллических включений. Оно осуществляется при интенсивном смешивании стали в ковше со специальным шлаком. После такой обработки сталь обладает высокими механическими свойствами. Так, мартеновская сталь, обработанная синтетическими шлаками, по качеству близка к стали, выплавляемой в электрических печах.

Выплавленную сталь выпускают из плавильной печи в разливочные ковши. Из ковшей сталь разливают в изложницы или кристаллизаторы посредством установок для непрерывной разливки стали (УНРС).

Изложницами называют чугунные формы для получения слитков. Конфигурация изложниц зависит от сорта заливаемой стали и назначения слитка. Для разливки спокойной стали применяют изложницы, расширяющиеся вверху, кипящей — внизу. Размеры изложницы зависят от массы слитка.

Обычно углеродистые спокойные и кипящие стали разливают в слитки массой до 25 т, легированные и высококачественные — от 300 кг до нескольких тонн, а некоторые сорта высоколегированных сталей — в несколько сот килограммов.

Существует три основных способа разливки стали.

Разливку в изложницы сверху (рис. 2.6, а) применяют для получения крупных слитков. При таком способе разливки сталь падает в изложницу с большой высоты, брызги металла застывают на стенках изложницы и ухудшают поверхность слитка, образуя оксидные пленки. Для улучшения качества слитков приходится защищать поверхность заготовки, что является очень трудоемкой операцией.

При сифонной разливке сталью заполняется сразу несколько изложниц (рис. 2.6, 6). Этот способ обеспечивает плавное, без разбрызгивания заполнение изложниц, поверхность слитка получается чистой. Однако при этом повышается трудоемкость подготовки оборудования, увеличивается расход огнеупорных материалов.

Оба способа разливки широко применимы. Для обычных углеродистых сталей используют разливку в изложницы сверху, для легированных и высококачественных — разливку сифоном.

При непрерывной разливке (рис. 2.7) жидкую сталь из ковша 1 через промежуточное разливочное устройство 2 непрерывно подают

Рис. 2.6. Разливка стали в изложницы: а — непосредственная; 6 — сифонная

Рис. 2.7. Схемы установок непрерывной разливки стали: а — вертикальной; б — радиальной

в кристаллизатор — изложницу без дна 3, из нижней части которой вытягивается затвердевающий слиток 5. Перед заливкой стали в кристаллизатор вводят затравку, образующую его дно. Жидкая сталь, попадая в кристаллизатор и на затравку, охлаждается, затвердевает. Затравка тянущими валками вытягивается из кристаллизатора вместе с затвердевающим слитком, сердцевина которого находится в жидком состоянии. На выходе из кристаллизатора слиток охлаждается водой в зоне вторичного охлаждения 4 и полностью затвердевший попадает посредством тянущих валков 6 в зону разрезки 7, где его разрезают газовым ацетиленокислородным резаком 8 на куски заданной длины.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector