Для чего в сталь вводятся легирующие элементы?
Влияние легирующих элементов на сталь – как делают идеальные сплавы?
Влияние легирующих элементов на свойства металлургических сплавов изучено по-настоящему хорошо. Благодаря этому введение в сталь различных добавок позволяет получать композиции с уникальными технологическими характеристиками.
1 Группы легирующих элементов и их обозначение
Компоненты, используемые для улучшения свойств сталей, разбивают по степени применимости на три подвида:
- Никель – обозначение в готовом сплаве – Н, молибден – М;
- Марганец – Г, хром – Х, кремний – С, бор – Р;
- Ванадий – Ф, ниобий – Б, титан – Т, цирконий – Ц, вольфрам – В.
К третьему подвиду относят и остальные элементы для легирования – азот (обозначение – А), медь (Д), алюминий (Ю), кобальт (К), бор (Р), фосфор (П), углерод (У), селен (Е). Отметим, что подобное деление обусловлено в основном экономическими соображениями, а не сугубо физическими.
По характеру воздействия добавок на модификации (полиморфные), наблюдаемые в сталях, все легирующие элементы делят на два типа. К первому относят компоненты, которые при любых температурах способны стабилизировать аустенит (в основном это марганец и никель). Вторая группа включает в себя элементы, которые при определенном своем содержании могут поддерживать ферритную структуру сплава (алюминий, молибден, хром, кремний, вольфрам и другие).
По механизму влияния на свойства и структуру сталей добавки причисляют к одному из трех типов:
- Легирующие элементы, способные создавать карбиды углерода при реакции с последним (бор, молибден, титан, цирконий).
- Добавки, обеспечивающие полиморфные превращения (альфа-железо в гамма-железо).
- Химэлементы, при использовании которых получаются интерметаллические соединения (ниобий, вольфрам).
Правильное легирование сталей подразумевает введение в их состав тех или иных добавок в строго рассчитанных количествах. При этом оптимальных результатов металлурги достигают в случае, когда «насыщение» сплавов производится комплексно.
2 Какие свойства сплавов позволяют улучшить легирующие добавки?
Легирование дает возможность снизить деформируемость изделий, производимых из различных марок стали, снизить порог хладоломкости сплавов, свести к минимуму риск появления в них трещин, значительно уменьшить скорость закалки и при этом повысить:
- прокаливаемость;
- ударную вязкость;
- текучесть;
- сужение (относительное);
- коррозионную стойкость.
Все легирующие добавки (кроме кобальта), повышают прокаливаемость сталей и уменьшают (зачастую весьма существенно) критическую скорость закалки. Достигается это за счет увеличения устойчивости аустенита в сплавах.
Образующие карбиды элементы способны замещать атомы железа в цементите. За счет этого карбидные фазы становятся более устойчивыми. При выделении карбидов из твердых растворов наблюдается явление дисперсионного упрочнения сталей. Другими словами – сплав получает дополнительную твердость.
Также карбидообразующие добавки делают процесс коагуляции дисперсных частиц в сталях более медленным и препятствуют (при нагреве) росту аустенитных зерен. Благодаря таким легирующим компонентам сплавы становятся намного прочнее.
Аустенитную структуру улучшают любыми легирующими добавками, кроме углерода и азота.
Насыщенный добавками аустенит получает высокий показатель теплового расширения, становится парамагнитным, у него снижается предел текучести. Композиции с подобными свойствами незаменимы для выпуска немагнитных и нержавеющих сталей. Аустенитные сплавы, кроме того, прекрасно упрочняются при грамотно проведенной холодной деформации.
Стали, имеющие ферритную структуру, при легировании также обретают добавочную прочность. Максимальное влияние на этот показатель оказывает хром и марганец. Обратите внимание! Прочностные характеристики сплавов увеличиваются при снижении геометрических параметров ферритных зерен.
3 Влияние конкретных химических элементов на свойства стали – коротко об основном
Давайте посмотрим, какие именно характеристики готовых сплавов способны улучшить те или иные добавки:
- Вольфрам создает карбиды, которые повышают красностойкость и показатели твердости стали. Также он облегчает процесс отпуска готовой продукции, снижая хрупкость стали.
- Кобальт увеличивает магнитный потенциал металла, его ударостойкость и жаропрочность.
- Никель повышает прокаливаемость, прочность, коррозионную стойкость, пластичность сталей и делает их более ударопрочными, снижает предел хладноломкости.
- Титан придает сплавам высокую плотность и прочностные свойства, делает металл коррозионностойким. Стали с такой добавкой хорошо обрабатываются специальным инструментом на металлорежущих агрегатах.
- Цирконий вводят в сплавы, когда необходимо получить в них зерна со строго определенными размерами.
- Марганец делает металл устойчивым к износу, повышает его твердость, удароустойчивость. При этом пластичные свойства сталей остаются на прежнем уровне, что важно. Заметим – марганца нужно вводить не менее 1 %. Тогда влияние этого элемента на эксплуатационные показатели сплава будет ощутимым.
- Медь делает металлургические композиции стойкими к ржавлению.
- Ванадий измельчает зерно сплава, делает его прочным и очень твердым.
- Ниобий вводят для снижения явлений коррозии в сварных изделиях, а также для повышения кислотостойкой стальных конструкций.
- Алюминий увеличивает окалийность и жаропрочность.
- Неодим и церий используют для сталей с заданной заранее величиной зерна, сплавов с малым содержанием серы. Эти элементы также снижают пористость металла.
- Молибден повышает прочность сплавов на растяжение, их упругость и красностойкость. Кроме того, эта легирующая добавка делает стали стойкими к окислению при высоких температурах.
Больше влияние на характеристики сталей оказывает кремний. Он повышает окалийность и упругость металла. Если кремния содержится около 1,5 %, сталь становится вязкой и при этом очень прочной. А при его добавке более 1,5 % сплавы обретают свойства магнитопроницаемости и электросопротивления.
Грамотно выполненное легирование сталей обеспечивает их особыми свойствами. И современные металлургические предприятия активно используют этот процесс для выпуска широкой номенклатуры сплавов с высокими технологическими характеристиками.
Легированная сталь — описание, маркировка, состав и где применяется
Среди металлов на первом месте находится сталь – наиважнейший ресурс любого государства. Различают много видов и марок этого железо-углеродистого сплава. Ниже будет подробно рассказано о легированной стали — что это, чем она отличается от углеродистой (нелегированной) продукции, какая существует классификация сплавов и как расшифровывать маркировку.
Что такое сталь
Сплав на основе железа (не менее 45%) называют сталью. В зависимости от процентного содержания второго исходного компонента – углерода, различают сплавы высокоуглеродистые (0,6-2,14% С), среднеуглеродистые (0,25-0,6% С), и низкоуглеродистые (не более 0,25% С). Чем выше данный показатель, тем более прочная и упругая сталь, но в то же время с пониженной пластичностью и сопротивляемостью ударам.
Обязательными компонентами в составе сплава являются раскислители – марганец и кремний. Эти химические элементы присутствуют в незначительном количестве, и на свойства не влияют. Их цель – нейтрализация вредного действия кислорода.
Даже качественная сталь содержит вредные примеси, от которых нельзя избавиться. Это:
- сера, из-за которой возникают трещины;
- фосфор, увеличивающий хрупкость (хладноломкость);
- азот, кислород, водород – разрыхлители структуры стали;
- окислы и нитриды, приводящие к разрывам.
Кроме перечисленных компонентов, в углеродистых сплавах всегда есть и другие вещества, которые попадают вместе с исходными материалами при выплавке: медь, цинк, хром, никель, свинец. Уровень их содержания настолько ничтожен, что они не оказывают ни положительного, ни отрицательного влияния.
Свойства и виды сталей
Стали присущи такие свойства:
- Физические: теплоемкость, электро- и теплопроводность, расширение при нагревании.
- Механические: прочность, твердость, упругость, пластичность, вязкость, выносливость.
- Химические: жаропрочность, окалиностойкость, огнеупорность, сопротивление коррозии.
Чтобы существенно изменить свойства сплава, в сталь вводятся легирующие элементы – другие металлы и неметаллы. Такая технология была создана еще в 19 ст. Стали называются легированными, если доля каждого элемента составляет не менее 0,1%.
Отличия
Сталь легированная от нелегированной отличается химическим составом. Первая, кроме железа и углерода, содержит большой набор дополнительных компонентов, которые оказывают влияние на ее свойства. Углеродистая (классическая) сталь содержит следы случайных примесей, которые не оказывают значительного влияния на ее свойства.
Другие отличия от обычных углеродистых сплавов:
- устойчивость к коррозии и воздействию агрессивных сред;
- искрение металла, если поднести его заточному кругу;
- бывает низкая несущая способность;
- более высокие затраты производства.
Легирующие добавки
Для легирования сталей используют химические элементы из разных групп таблицы Менделеева. Легирующие металлы (в русскоязычной маркировке сплавов обозначаются русскими буквами) вводятся в сплав для изменения следующих характеристик:
- Никель (Н) – повышение теплоемкости, вязкости, пластичности, уменьшение хрупкости, что важно для обработки давлением.
- Хром (Х) – повышение твердости и ударопрочности. Сильная защита от коррозии, поэтому много хрома в нержавейке.
- Ниобий (Б) – улучшение устойчивости к кислотам.
- Кобальт (К) – повышение жаропрочности, увеличение сопротивляемости ударам.
- Медь (Д) – увеличение прочности, но с некоторым уменьшением уровня вязкости. Используется преимущественно в строительной стали.
- Титан (Т) и цирконий (Ц) – снижение зернистости. Структура сплава становится однородной, что снижает вероятность появления трещин.
- Вольфрам (В) и молибден (М) – повышение прочности при термической обработке, устойчивость к ржавлению.
- Алюминий (Ю) – добавление стойкости к появлению окалин при высоких температурах.
- Ванадий (Ф) – улучшение структуры, увеличение жаропрочности.
Список дополняют неметаллические добавки:
- Марганец (Г) – уменьшение вредного влияния серы, фосфора и кислорода.
- Кремний (С) – повышение прочности с сохранением вязкости.
- Селен (Е) – улучшение текучести, облегчение механической обработки стальных деталей.
- Бор (Р) – улучшение микрострутуры, повышение прокаливаемости.
- Азот (А) – улучшение механических свойств, используется в высоколегированных сталях.
Расшифровка маркировки стали
Чтобы определить марку стали, разработано специальное обозначение, согласно ГОСТ 4543-71. В его основе цифры и буквы. Первая литера показывает, к какой группе сталей относится сплав. Например:
- Я – хромоникелевая нержавейка;
- А – автоматная сталь;
- Ж – нержавейка;
- Е – магнитная сталь;
- Р – быстрорежущая;
- Ш – шарикоподшипниковая;
- ШХ – шарикоподшипниковая хромистая сталь.
Если буква отсутствует, это означает принадлежность к классическому сплаву с использованием добавок.
Первая цифра в маркировке обозначает сотые доли процентного содержания углерода. Далее идут буквы и цифры, указывающие на легирующие добавки и их содержание, также в процентах. Например, маркировку Х5Х18Н10 следует читать так: хромистая сталь, содержащая 0,05% углерода, 18% хрома, 10% никеля. На английском языке маркировка выглядит иначе: X5CrNi18-10.
- ЕХ9К15М. Означает: магнитная хромистая сталь, содержит 0,09% углерода, 15% кобальта, не более 1% молибдена.
- 38ХН3МФ: 0,38% углерода, менее 1% хрома, 3% никеля, молибдена и ванадия не более 1%.
Процентное соотношение добавок записывается целыми числами, без десятых и сотых долей.
В конце маркировки (справа) также могут присутствовать буквы: А – высококачественная, Ш – особовысококачественная сталь. Другие буквы обозначают способ производства: ТО (Т) – термически обработанная, Н – нагартованный прокат.
Классификация легированных сталей
Классификация и маркировка легированных сталей осуществляется по нескольким параметрам.
По качеству
В зависимости от количества вредных примесей (сера, фосфор), легированные стали бывают качественные (S≤0,04%, P≤0,035%), высококачественные (S≤0,025%, P≤0,025%), особо высококачественные: (S≤0,06%, P≤0,07%).
По количеству добавок
В зависимости от общего количества добавок, различают такие виды легированной стали:
- Высоколегированная сталь: 10-50% легирующих добавок. Изделия максимально прочные, но и самые дорогие.
- Среднелегированная: 2,5-10% добавок. Это самая ходовые марки.
- Низколегированная: добавок не более 2,5%. Положительные качества улучшились, но на металлообработке заметно не сказались.
В зависимости от химического состава, стали называются: хромистые, хромоникелевые, хромоникельмолибденовые, марганцовистые и другие. В маркировке обозначаются соответствующими буквами.
По назначению
По практическому применению различают стали конструкционные (машиностроительные, строительные, улучшаемые, цементуемые), инструментальные (для штампов, режущего и измерительного инструментов) и с особыми свойствами.
Состав и применение легированных сталей
Применение сплавов обусловлено их химическим составом. Так, строительные низколегированные стали используются для металлических конструкций с равномерно распределенной нагрузкой между всеми элементами. Единственное требование – хорошая свариваемость.
Виды конструкционных сталей:
- Улучшаемые, с высоким содержанием хрома, обогащенные бором, никелем, молибденом, марганцем. Предназначены для термообработки.
- Пружинно-рессорные. Эти сплавы легируются кремнием, кобальтом, марганцем, бором, титаном. Используются в производстве транспорта.
- Подшипниковые. Обладают повышенной твердостью и износостойкостью. Обязательно содержат хром и минимум неметаллических добавок.
- Теплоустойчивые. Используются для производства паровых нагревателей.
Инструментальные стали для фрез, резцов, метчиков легируются хромом, ванадием, титаном и др. добавками. Это очень дорогие быстрорежущие сплавы, поэтому используются только в режущих плоскостях. Для измерительных инструментов сталь легируют хромом, вольфрамом и марганцем. Это обеспечивает твердость и сохранение первоначальных размеров.
Стали с особыми свойствами:
- Высокопрочные. Это высоколегированные стали со специально подобранным составом. Применяются для изготовления ответственных узлов механизмов.
- Нержавеющие, с добавками марганца и хрома. Применяются для работы в химически агрессивных средах. Используются для изготовления труб.
- Износостойкие, с высоким содержанием марганца. Используются для изготовления стрелок на железных дорогах, гусениц, горного оборудования, ковшей экскаваторов.
К этой группе относятся также жаропрочные, жароустойчивые, магнитные, немагнитные, реостатные, с высоким электросопротивлением сплавы.
Стальной металлолом
Цена на стальной лом зависит от 2-х параметров: вид добавки и качество стали. Легирующие сплавы с высоким содержанием цветных металлов ценятся выше чугуна, (особенно нержавейка и быстрорез). При низком содержании цветных металлов стальной металлолом идет по цене черного металла.
Для чего легируют стали
Содержание
Изобретение легирования – великий дар науки человечеству. Термин «ligare» происходит от латинского – связывать, и обозначает усиление требуемых характеристик с помощью добавок. Таким образом, можно повысить прочность, стойкость к холоду, влаге и агрессивным веществам.
Стальной расплав получают из чугуна. Первоначально он имеет тот же химический состав: железо, углерод, незначительные доли кремния и марганца, вредные примеси в виде серы и фосфора, кроме этого присутствуют соединения атмосферных газов. В середине XIX века с изменением взгляда на химию, было открыто, что присадки некоторых металлов могут встраиваться в углеродную структуру, изменяя ее химические и физические свойства. Первым изобретением стал прототип режущих марок с присадками вольфрама, созданный английским металлургом Р. Мюшеттом в 1858 году.
Массовое применение легированных сталей началось в 1882 с производства цепей велосипедов, но главный толчок распространению технологии дали первые автомобильные концерны. Позже влияние легирующих элементов на качество металлов дало возможность возводить масштабные инфраструктурные сооружения: мосты, стадионы, сложные инженерные системы. Дополнительный толчок получили сферы производства трубопропроводной арматуры и сверхпрочных крепежей.
Производство легированной стали
Металлургическая промышленность во многом изменилась, так как обработка легированной стали требовала новых знаний. Сплавы оказались чувствительны к термическим режимам, было открыто явление отпускной хрупкости, заготовки начали остужать не на воздухе, а в воде или масле. Изменение показателей теплопроводности привело к поискам эффективных способов сварки.
Свойства легированных сталей
В основе легирования лежит образование новой структуры – перекристаллизация. Каркасом молекулярного строения служит твердый раствор, сформированный карбидами. Согласно правилам Юм-Розери, атомы присадок встраиваются в металл по алгоритмам внедрения или замещения. Для этого перед легированием из расплава частично удаляют углерод. Его концентрация в составе стали указывается в начале маркировки в сотых долях процента. Например, в сплаве 15Х25Т1 его содержание составляет 0,15%.
Характеристика конструкционных и легированных сталей
Дополнительная прочность легированных сталей достигается благодаря дисперсному твердению – выделению наноразмерных частиц. При нагреве легирующий элемент может целиком уйти в твердый раствор, а при охлаждении образует второстепенную фазу, равномерно распределяясь внутри кристаллической решетки.
Существует специальная категория коррозийно-стойких легированных сталей:
- Активное железо в системе Cr-Ni-Mn-Si связывается и не может взаимодействовать с агрессивными веществами.
- Некоторые добавки увеличивают жаростойкость – способность противостоять реагентам при высоких температурах.
- Марганец является активным раскислителем и не допускает образования оксидов.
Свариваемость легированных сталей благодаря современным методам находится на высоком уровне. Выбор способа зависит от количества добавок: учитывают терморежимы, подбирают защитную среду и присадочные материалы, подходящие всем компонентам.
Классификация легированных сталей
Чем выше содержание углерода, тем больше добавок можно связать твердым раствором. Однако у каждого компонента есть предел, при котором увеличение концентраций становится неэффективным. Дисперсионное твердение широко применяется с 1950-х годов. Частицы формируются из интерметаллидов, свободных от карбидных соединений. Упрочнение присуще комплекснолегированным материалам.
Стальные сплавы классифицируют по количеству присадок:
- Низколегированные (до 2,5%) – имеют улучшенные механические свойства в сравнении с нелегированными, применяются для изготовления ответственных сварных конструкций, подшипников, кованых изделий.
- Среднелегированные (2,5-10%) – стойкость в тяжелых условиях: агрессивные среды, ударные нагрузки.
- Высоколегированные (от 10%) – специального назначения, используемые во всех областях промышленности и в быту.
Баланс достигается благодаря взаимодействию нескольких элементов, это не только придает устойчивость химической структуре, но и создает комплекс уникальных качеств. Например, особо прочные медицинские инструменты проходят многоступенчатую закалку, но этот же материал без сложной термообработки можно использовать для работы с кислотосодержащими продуктами: в виноделии, на молочном производстве.
Какие стали относятся к легированным
Распространено определение, относящее сплав с нехарактерными примесями к легированным. Его нельзя назвать точным. Технологический процесс подразумевает замещение атомов углерода металлами, стабилизирующими молекулярное строение, придающими дополнительные качества.
Готовая легированная сталь
Сегодня разработано более тысячи стальных сплавов, применяемых в морском судостроении, в добывающей и перерабатывающей промышленности и других отраслях.
Примеры легированных сталей:
- Низколегированная сталь 09Г2С в сравнении с очищенными углеродными аналогами имеет высокую механическую прочность, что позволяет создавать более тонкие элементы масштабных сварных конструкций, а хорошая свариваемость позволяет быстро их монтировать. Отличительной особенностью является стойкость к охрупчиванию при низких температурах, благодаря чему 09Г2С широко используется для прокладки инженерных сетей и строительства зданий в условиях крайнего севера.
- Универсальный нержавеющий материал 08Х18Н10 широко применяется в пищевом производстве, изготовлении лестничных перил и мебели, кухонных и столовых приборов.
- Из 40ХН2МА производят тяжелонагруженные детали буровых установок, поршней, коленчатых валов. Ванадий и молибден усиливают прочностные характеристики, изделия подвергаются азотированию и поверхностные слои достигают высочайшей микротвердости, сердцевина при этом сохраняет ударную вязкость. Это свойство предотвращает образование трещин и обеспечивает долгую службу дорогостоящих установок.
Особенности легированной стали — разновидности, применение
В современном мире имеется большое количество разновидностей стали. Это один из самых востребованных материалов, который используется практически во всех отраслях промышленности.
Что такое легированная сталь
Это углеродистая сталь для улучшения технологических свойств которой введены специальные легирующие элементы. Процент добавок в составе невелик, но даже при незначительной концентрации, физические свойства металла улучшаются в несколько раз.
В зависимости от вида используемых добавок при производстве стали металл приобретает следующие свойства:
- неподверженность коррозии;
- упругость;
- тугоплавкость;
- прочность.
Для придания перечисленных качеств в состав добавляют следующие металлы:
- хром;
- никель;
- молибден;
- вольфрам;
- медь.
Зачастую в углеродистую сталь достаточно добавить 1 — 3% легирующих элементов для придания ей необходимых свойств и качеств.
Конструкционные легированные стали
Толстостенные трубы из конструкционной стали
Классификация этого вида низкоуглеродистого железа достаточно обширна. Среди параметров, определяющих сортировку конструкционной стали присутствуют:
- форма и габариты;
- процентная масса легирующих элементов;
- химический состав и базовая примесь;
- качество металла, его поверхности (две различные категории);
- вид обработки.
Разобраться какие стали называются легированными (конструкционный металл) поможет ГОСТ 4543-71. Соответственно этому документу изготовляется конструкционное низкоуглеродистое железо. Таким образом, вопрос «дайте определение легированных сталей», сводится к ассортименту добавок, вводимых в металл для улучшения его характеристик. Это: азот, хром, кремний, бор, тугоплавкие металлы. Дополняют ряд никель, медь, алюминий и прочие цветные металлы.
Рассматривая конструкционные легирующие стали, следует обратить внимание на такой критерий, как общее содержание примесей. Он сортирует металл на три класса:
- высоколегированный – доля добавок более 10%;
- умеренный от 2.5 до 10%;
- низкое содержание примесей — менее 2,5%.
Во всех случаях указывается массовый процент легирующей добавки.
Химический состав – еще один фактор классификации. Классификация конструкционной легированной стали, разделяющий ее на качественную, высококачественную, маркируемую литерой «А» и металл электрошлакового переплава — особо высококачественная разновидность с ведущей «Ш» в маркировке.
Аналогично качеству химического состава, различают три категории легированной конструкционной стали, соответственно качеству обработки поверхности. Дополнительный критерий сортировки в этом случае – вид обработки. Это, во-первых, кованый или горячекатаный прокат, калиброванный металл, а также сталь со специальной отделкой поверхности.
Уровень термической обработки отражает маркировка легированных сталей. В частности, литера «Т» говорит о термически обработанном металле, «Н» – нагартованном. Обозначение легирующих элементов в стали указывается после содержания углерода (первая пара цифр).
Нагартовка — это упрочнение металлов и сплавов вследствие изменения их структуры и фазового состава в процессе пластической деформации при температуре ниже температуры рекристаллизации (определение из Википедии)
Дополнительные обозначения легированных сталей указывают на следующие особенности:
- По степени раскисления. Параметр напрямую зависит от процентного вхождения кремния. Стали содержащие не более 0.07% называют кипящими, свыше 0.12% — спокойными. Интервал 0.07 – 0.12% соответствует полуспокойным маркам металла.
- Непосредственно маркировка. Формируется из нескольких элементов. Первый – буквенное обозначение Б или В (группа А не обозначается) с последующим «Ст». Например, Ст1кп2; БСт2пс; ВСт6сп3. Второй – цифра, соответствующая номеру ГОСТ. Третий символ: буква «Г», присутствие которой указывает на повышенно содержание марганца. Далее идут степень раскисления металла и номер категории стали.
- Применение. Параметр, указывающий, где используют легированные конструкционные стали. Маркировки Ст1, Ст2 отводятся под проволоку и изделия из прутков: гвозди или заклепки. Крепежные детали обозначаются Ст3, Ст4 а осевые элементы или валы под слабой нагрузкой – Ст5, Ст6.
Альтернативная классификация конструкционных сталей по сфере использования, разделяет металл на подшипниковый, рессорно-пружинный и теплоустойчивый. В первых двух случаях наименования говорят сами за себя, тогда как последний вариант соответствует металлу, сектор применения которого — энергетическое машиностроение. Подобные конструкционные стали используются в производстве котлов, паронагревателей или сосудов.
Свойства легированной стали
Свойства легированных сталей являются разнообразными. Они главным образом определяются теми добавками, которые применяются в качестве легирующих при производстве отдельных видов стальных материалов.
В зависимости от добавленных легирующих компонентов сталь приобретает следующие качества:
- Прочность. Данное свойство приобретает после добавления в ее состав хрома, марганца, титана, вольфрама.
- Устойчивость к образованию коррозии. Это качество появляется под воздействием хрома, молибден.
- Твердость. Сталь становится боле твердой благодаря хрому, марганцу и другим элементам.
Внимание: Стоит отметить, что для того, чтобы легированная сталь была более прочной и устойчивой к внешнему влиянию окружающей среды необходимое содержание хрома не должно быть менее двенадцати процентов.
Сталь легированного типа при правильном процентном соотношении всех входящий в нее элементов не должна менять свои качестве при температуре нагревания до шестисот градусов Цельсия.
Производство легированной стали
Легирование стали
Легирование стали необходимо для изготовления инструментов и полупроводников. В первом случае особое внимание обращают на механические свойства, а во втором — на токопроводящие характеристики. Это требует не только разных добавок (например, легирование стали алюминием), но и разных технологических процессов. Легированная сталь представляет собой железоуглеродистый сплав с дополнительными элементами (никель, хром, молибден, кобальт и алюминий) для придания этой стали особых характеристик, таких как: устойчивость к коррозии, гибкость и твердость, что делает ее лучше обычной углеродной стали.
Сплавы, как правило, обозначаются в соответствии с преобладающими элементами, такими как никелевая сталь, хромистая сталь и хромованадиевая сталь. Сплавы можно встретить практически во всех отраслях промышленности, от гражданского строительства до судостроения, в нефтяной, автомобильной и авиационной отраслях.
Разнообразие возможных сплавов практически бесконечно, как и разнообразие характеристик.
Процесс легирования
Легированная сталь может быть произведена несколькими способами. Легирование бывает поверхностным и объемным. В первом случае легирующие добавки вводятся только в верхний слой. Легирующий элемент проникает неглубоко, примерно на 1-2 мм. Это необходимо для создания на поверхности металла определенных свойств (например, антифрикционных). Поверхностное легирование намного лучше напыления, а поэтому часто применяется при изготовлении керамики и стекла. Введение добавок во весь объем металла предусматривается объемным легированием.
Легирующих добавок может быть несколько. Они могут быть как металлическими, так и не металлическими (например, фосфор). Для получения различных характеристик легирование может производиться на различных этапах плавки.
Добавление легирующих элементов направлено на создание микроструктурных изменений, которые, в свою очередь, способствуют изменению физико-механических свойств материала, позволяя ему выполнять определенные функции.
Легирование полупроводников проводится с помощью термодиффузии, нейтронно-трансмутационного легирования и ионной имплантацией. Ионное легирование проводится в два этапа. Сначала проводится загонка легирующих атомов, а затем их активируют. Распределение элементов зависит от температуры и времени, глубина вхождения — от энергии. При термодиффузии происходит осаждение легирующих элементов, отжиг и удаление легирующих элементов. Нейтронно-трансмутационное легирование происходит благодаря ядерным реакциям — в данном случае легирующие и легируемые элементы объединяются монокристаллический материал.
Свойства и назначение
Наиболее часто используемыми легирующими элементами являются никель, марганец, хром, кремний, свинец, селен и бор. Менее часто используются алюминий, медь, ниобий, цирконий и вольфрам.Назначение этих элементов очень разнообразно, и при использовании в нужных пропорциях стали получают с определенными характеристиками, которые, однако, не могут быть достигнуты с обычными углеродистыми сталями.Сплавы обычно классифицируются с учетом элементов, содержание которых наиболее велико, и которые называются базовыми компонентами. Элементы, которые находятся в меньшей пропорции, рассматриваются как вторичные компоненты.
Железо само по себе не особо прочное, но его прочность значительно возрастает, когда он легируется углеродом, а затем быстро охлаждается для производства стали. Некоторые характеристики стали — мягкая, полумягкая, полутвердая, твердая — в значительной степени обусловлены содержанием углерода, которое может составлять от 0,10 до 1,15%.
Риски
Некоторые ферросплавы производятся и используются в форме мелких частиц; переносимая по воздуху пыль представляет собой потенциальную опасность токсичности, пожара и взрыва. Кроме того, профессиональное воздействие паров при изготовлении некоторых сплавов может привести к серьезным проблемам со здоровьем. Ряд сплавов олова опасен для здоровья (особенно при высоких температурах) из-за вредных свойств металлов, с которыми можно легировать олово (например, свинец).
Практическое применение легирующих добавок
Никель, осмий, рутений, медь, золото, серебро и иридий легируются платиной для повышения твердости. Сплавы, образованные с кобальтом, приобрели значение благодаря своим ферромагнитным свойствам. Родий используется в качестве антикоррозийного электролитического покрытия для защиты серебра от потускнения. Родий легируется платиной и палладием, чтобы получить очень твердые сплавы.Цель легирования медью — повысить коррозионную стойкость.Также медью легируют серебро. В чистом виде серебро слишком мягкое для изготовления монет, столовых приборов и украшений, для всех областей применения оно упрочняется путем легирования медью.
Черные сплавы
Черные сплавы — это железо и его сплавы. Значительное содержание углерода делает чугун очень хрупким. Несмотря на свою хрупкость и более низкие механические свойства, чем у стали, их низкая себестоимость, простота литья и специфические характеристики делают их одним из самых ценных в мире продуктов с самым большим тоннажем производства.
Цветные сплавы
Цветные сплавы — это сплавы, которые не содержат железа или содержат относительно небольшое количество железа. Их характеристики — значительная коррозионная стойкость, высокая электро- и теплопроводность, низкая плотность и простота производства.
Нержавеющая сталь
Общие характеристики нержавейки делают ее универсальным материалом, который хорошо адаптируется к требованиям сегодняшнего дня. Любые виды сплавов имеют свои преимущества в зависимости от химического состава.
Эстетика. Существует ряд видов отделки поверхности: от матовой до глянцевой, от сатиновой до гравировки. Отделка также может быть узорчатой или окрашенной, что делает нержавеющую сталь уникальным и эстетичным материалом. Архитекторы часто выбирают этот материал для строительных работ, дизайна интерьера и городской мебели.
Механические свойства.Нержавейка обладает лучшими механическими свойствами при комнатной температуре по сравнению с другими материалами, что является преимуществом в строительном секторе, так как позволяет снизить вес на м² или уменьшить размеры элементов конструкции. Хорошая эластичность и твердость в сочетании с неплохой износостойкостью (трение, истирание, удары, эластичность…) позволяют использовать нержавейку в широком спектре проектов. Кроме того, нержавейка может устанавливаться на стройплощадке, несмотря на зимние температуры, без риска хрупкости или поломки, что не препятствует удлинению сроков строительства.
Огнеупорность. По сравнению с другими металлами, нержавейка обладает лучшей огнеупорностью в конструкции благодаря высокой температуре плавления (выше 800 °C). Нержавейка не выделяет токсичных паров. Коррозионная стойкость: при содержании хрома 10,5% нержавеющая сталь постоянно защищена пассивным слоем оксида хрома, который естественным образом образуется на ее поверхности при контакте с влажностью воздуха. При повреждении поверхности пассивный слой восстанавливается. Это обеспечивает коррозионную стойкость.
Классификация легированных сталей
Сплавы разделяются на три категории: низколегированные, среднелегированные и высоколегированные. На степень легирования стали влияет средний уровень количества других включенных элементов. Граница, разделяющая категории, не очень ясна.
Классификация по содержанию легирующих элементов:
- низколегированная (до 2,5%);
- среднелегированная (до 10%);
- высоколегированная (от 10% до 50%).
По практическому применению:
- конструкционные (машиностроительные или строительные);
- инструментальные;
- специального назначения.
Маркировка легированных сталей
Требования оговаривает ГОСТ 4543-71. Легирующие добавки обозначаются так:
- Н — никель,
- Г — марганец,
- Е — селен,
- А — азот,
- С — кремний,
- Т — титан,
- В — вольфрам,
- Ф — ванадий,
- Д — медь,
- М — молибден,
- X — хром.
ГОСТ 4543-71 Прокат из легированной конструкционной стали
После каждой буквы указывается количество элемента.Среднее содержание основных элементов указывается с точностью до 1%, углерод даётся в сотых долях процента. Первая цифра обозначает, сколько углерода содержит сталь.