E-polirovka.ru


3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность стали при различных температурах

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Коэффициент теплопроводности для различных марок сталей и сплавов

Поиск и выбор коэффициента теплопроводности для различных марок сталей и сплавов по таблице, при указанных температурах °C. В таблице использованы справочники [1-11].

Для выбора марок стали следует пользоваться системой поиска по таблице.

Коэффициент теплопроводности λ, Вт/(м·°C), при температуре, °C

Марка стали, сплава20°C100°C200°C300°C400°C500°C600°C700°C800°C900°C1000°C
Ст3сп55545045393430
0881695145
08кп63605651474137343027
1057534538
10кп585449454036322927
15565345
15кп535349464339363230
2051,751494642
20кп514944433936322626
2552514946434036322627
3051494236
35514942
40494947444138352920
45484744413936312726
50484847444138353127
5568553632
60675336
15К5753—45
20К514946423936
22К5048464441
А12776747
20Г786748
30Г75645244
40Г59534724
50Г434241383634312928
17Г1СУ42,2

(10Х12Н22Т3МР, ЭП 33,

  1. Машиностроение. Энциклопедия. Т. II–3. Цветные металлы и сплавы. Композиционные металлические материалы. /Под общей редакцией И.Н. Фридляндера. М.: Машиностроение, 2001. 880 с.
  2. Масленков С.Б. Жаропрочные стали и сплавы. Справочник. М.: Металлургия, 1983. 192 с.
  3. Стали и сплавы. Марочник. Справ. изд. /Сорокин В.Г. и др. Науч. ред. В.Г. Сорокин, М.А. Гервасьев. М.: Интермет Инжиниринг, 2001. 608 с.
  4. Свойства конструкционных материалов атомной промышленности. Справочник в 8 т. Т. 3. Стали и сплавы для трубопроводов АЭС. /Дегтярев А.Ф., Каширский Ю.В., Козлов Вл.В. и др. Под ред. Вл.В. Козлова, С.В. Стрелкова. М.: ИЦ „Филин”, 2006. 256 с.
  5. Масленков С.Б., Масленкова Е.А. Стали и сплавы для высоких температур. Справочное издание. В 2-х книгах. Кн. 1. М.: Металлургия, 1991. 383 с.
  6. Марочник стали и сплавов для атомных энергетических установок. /Под ред. И.Р. Крянина, Г.П. Федорцова-Лутикова. М.: ЦНИИТМАШ, 1971. 195 с.
  7. Международный транслятор современных сталей и сплавов. /Под ред. В.Я. Кершенбаума. Т. 3. М.: Интак, 1993. 638 с.
  8. Журавлев В.Н., Николаева О.И. Машиностроительные стали. Справочник. 4-е изд., перераб. и доп. М.: Машиностроение, 1992. 480 с.
  9. Паршин А.М. Структура, прочность и радиационная повреждаемость коррозионностойких сталей и сплавов. Челябинск: Металлургия, Челябинское отделение, 1988. 656 с.
  10. Металловедение и термическая обработка стали и чугуна. Справочник. /Под ред. Н.Т. Гудцова, М.Л. Бернштейна, А.Г. Рахштадта. М.: Металлургиздат, 1956. 1205 с.
  11. Коррозия конструкционных материалов. Газы и неорганические кислоты: Справочное издание. В 2-х книгах. Кн. 1. Газы и фреоны. Батраков В.В., Батраков В.П., Пивоварова Л.Н., Соболев В.В. 2-е изд., перераб. и доп. М.: Интермет Инжиниринг, 2000. 344 с.

Похожие статьи

Нагревательные печи кузнечно-штамповочных цехов

Нагревательная печь – это технологический энергетический агрегат, в котором в результате горения топлива или преобразования электрической энергии выделяется теплота, используемая для тепловой обработки металлов. Печи должны удовлетворять ряду основных требований, к которым относятся: обеспечение высокой производительности при заданных технологических условиях нагрева (температуре, перепаде температур по сечению заготовки и пространству печи); минимальный удельный расход топлива; возможность […]

Соединение деталей пайкой

Соединение деталей пайкой – неразъемное соединение, заключающееся в том, что неразъемное соединение материалов получают с помощью расплавленного промежуточного металла (припоя), плавящегося при более низкой температуре, чем соединяемые детали. Соединение материалов происходит в результате диффузии припоя и основного материала путем смачивания, растекания и заполнения зазора между ними расплавленным припоем и сцепления их при кристаллизации шва (рис. […]

Cталь. Виды, свойства железных сплавов и стали

Содержание страницы1. Легированные стали2. Углеродистые стали3. Литейные чугуны4. Автоматные стали5. Мартенситно-стареющие высокопрочные стали6. Нержавеющие стали7. Инструментальные стали Термин «железоуглеродистые сплавы» применяется для сплавов железа с углеродом и классифицируются по содержанию в них углерода, как показано в Таблице 1. Чистое железо — относительно мягкий материал, и его трудно использовать в каких-либо коммерческих целях. Чистое железо содержит […]

Теплопроводность сталей: общее понятие и некоторые значения

Для того чтобы проводить какую-либо работу с различными материалами, перед их обработкой обязательно нужно узнать все данные, касающиеся характеристик материала, его физические свойства.

Ниже будет рассмотрен такой материал, как сталь. Внимание будет заострено на такой способности материалов, как теплопроводность. Это показатель, который обязательно надо знать, если предполагается работа с любым материалом.

Понятие «теплопроводность»

Для начала следует разобраться в самом понятии «теплопроводность». Это поможет пользователю легче лавировать среди сухих цифр и оперировать ими. Для того чтобы провести определённую работу, следует основательно подойти к делу и разузнать все возможные характеристики того материала, с которым впоследствии будет работать пользователь.

Теплопроводностью называют такую способность различных материальных тел к теплообмену (переносу энергии) к менее нагретым частям тела от его более нагретых частей. Этот процесс возможен, благодаря различным частицам тела, которые хаотически движутся. Такими частицами являются:

  • молекулы;
  • атомы;
  • электроны и так далее.

Такой теплообмен возможен во всех телах, в которых наблюдается неоднородное распределение температурных показателей. Сам механизм переноса тепла будет напрямую зависеть от агрегатного состояния рассматриваемого материала.

Также термин «теплопроводность» применяется для обозначения количественной характеристики способности любого физического тела проводить тепло. Если сравнивать тепловые цепи с цепями электрическими, то такой термин является аналогом проводимости.

Для того чтобы охарактеризовать количественную способность физического тела проводить тепло, используется специальная величина, которая именуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, которое проходит через образец материала, обязательно однородного, единичной площади и единичной длины за единицу времени при единичной разнице температур. В известной всем системе СИ такая величина измеряется в Вт/(м*градус Цельсия).

Само явление теплопроводности зиждется на принципах, которые с лёгкостью объясняет молекулярно-кинетическая теория. Они заключаются в том, что нагретые молекулы двигаются намного быстрее, чем молекулы, пребывающие в своём обычном состоянии, поэтому при своём быстром хаотическом движении они способны влиять на другие молекулы, находящиеся в более холодных частях тела и передавать им своё тепло.

Теплопроводность стали

Для того чтобы оперировать полученными знаниями о теплопроводности материалов для последующей работы с ними, следует учитывать все существующие нюансы для отдельного физического тела.

Если говорить именно о стали, то следует помнить, что данная характеристика этого металла снижается, если содержит в себе примеси различного рода. Можно привести даже конкретные примеры, которые могут подтвердить этот общеизвестный факт. Например, если в стали увеличено содержание углерода, то это отрицательно сказывается на коэффициенте теплопроводности стали. У легированных сталей этот коэффициент ещё ниже из-за присадок.

Если рассматривать чистую сталь, не содержащую всяких примесей, то ей теплопроводность будет достаточно высока, как и у всех металлов. Составляет она около 70 Вт/(м*гр. Цельсия).

Если обратиться к показателям у углеродистых и высоколегированных сталей, то они существенно ниже, что в принципе неудивительно. Это объясняется наличием в их составе примесей, что понижает коэффициент теплопроводности. Кстати, следует помнить о том, что сам фактор термического воздействия может существенно повлиять на теплопроводность высоколегированных и углеродистых сталей. Дело в том, что при увеличении температуры, коэффициент этой величины таких сталей понижается.

Теплопроводность нескольких различных видов сталей

Тут будут представлены сухие цифры для того, чтобы пользователь мог сразу найти нужные для себя показатели коэффициента данной величины для некоторых марок сталей:

  • Коэффициент теплопроводности низкоуглеродистых сталей, которые применяются в производстве обычных труб, равен 54, 51, 47 (Вт/(м*гр. С) для 25, 125, 225 градусов по Цельсию соответственно.
  • Средний коэффициент углеродистых сталей, который можно высчитать при комнатной температуре, находится в диапазоне от 50 до 90 Вт/(М*гр. С).
  • Коэффициент теплопроводности для обычной стали, которая не содержит различных примесей, которые, в свою очередь, не могут никак повлиять на этот коэффициент, равен 64 Вт/(м*гр. С). Этот коэффициент несущественно изменяется при изменении термического воздействия, но точно не так сильно, как в случае с углеродистыми и легированными сталями.

Выводы

Для успешного процесса обработки любого материала очень важно знать все его физические свойства и характеристики. Это нужно для того, чтобы успешно проделать всю требуемую работу и получить нужный результат. Незнание характеристик может привести к неприятным последствиям.

Теплопроводность стали — очень важный момент, если предполагается работа с этим металлом. Следует помнить не только основной коэффициент теплопроводности обычной стали, но и коэффициенты этой величины у её сплавов. Они обладают другими свойствами, что может сделать работу с ними более трудной.

Мастер должен быть обладать знаниями о том, что углеродистые и легированные стали обладают гораздо меньшим коэффициентом теплопроводности, так как в их составах содержатся примеси, напрямую влияющие на эту величину.

Также следует помнить, что коэффициент данной характеристики сталей очень зависит и от термического воздействия. Это означает, что чем температура выше, тем больше и коэффициент.

Теплопроводность стали, алюминия, латуни, меди

Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.

  • Что такое теплопроводность
    • Показатели для стали
  • Влияние концентрации углерода
  • Значение в быту и производстве

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Теплопроводность цветных металлов, теплоемкость и плотность сплавов

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.
Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Теплопроводность и плотность алюминия

В таблице представлены теплофизические свойства алюминия Al в зависимости от температуры. Свойства алюминия даны в широком диапазоне температуры — от минус 223 до 1527°С (от 50 до 1800 К).

Как видно из таблицы, теплопроводность алюминия при комнатной температуре равна около 236 Вт/(м·град), что позволяет применять этот материал для изготовления радиаторов и различных теплоотводов.

Кроме алюминия, высокой теплопроводностью обладает также медь. У какого металла теплопроводность больше? Известно, что теплопроводность алюминия при средних и высоких температурах все-таки меньше, чем у меди, однако, при охлаждении до 50К, теплопроводность алюминия существенно возрастает и достигает значения 1350 Вт/(м·град). У меди же при такой низкой температуре значение теплопроводности становится ниже, чем у алюминия и составляет 1250 Вт/(м·град).

Алюминий начинает плавиться при температуре 933,61 К (около 660°С), при этом некоторые его свойства претерпевают значительные изменения. Значения таких свойств, как температуропроводность, плотность алюминия и его теплопроводность значительно уменьшаются.

Плотность алюминия в основном определяется его температурой и имеет зависимость от агрегатного состояния этого металла. Например, при температуре 27°С плотность алюминия равна 2697 кг/м 3 , а при нагревании этого металла до температуры плавления (660°С), его плотность становится равной 2368 кг/м 3 . Снижение плотности алюминия с ростом температуры обусловлено его расширением при нагревании.

В таблице приведены следующие теплофизические свойства алюминия:

  • плотность алюминия, г/см 3 ;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент температуропроводности, м 2 /с;
  • теплопроводность алюминия, Вт/(м·град);
  • удельное электрическое сопротивление, Ом·м;
  • функция Лоренца.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град). Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС. Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Какие факторы влияют на показатель?

Чтобы понять, как повысить или понизить показатель разных видов металла, нужно знать какие факторы влияют на этот параметр:

  • размеры изделия, площадь поверхности;
  • форму заготовки;
  • химический состав;
  • пористость материала;
  • вид материала;
  • изменение температуры воздействия.

Также внимание нужно уделить строению кристаллической решетки.


Металлические листы (Фото: Instagram / metall61_armatura_dostavka)

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град). Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС. Размерность теплоемкости кал/(г·град). Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре. Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000! Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.

  1. Михеев М. А., Михеева И. М. Основы теплопередачи.
  2. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
  4. Шелудяк Ю. Е., Кашпоров Л. Я. и др. Теплофизические свойства компонентов горючих систем. М.: 1992. — 184 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.

Основные характеристики современных отопительных радиаторов

Рынок теплового оборудования изобилует современными моделями, отличающимися форматом и теплоотдачей, которые выпускаются из разного металла:

  • алюминий;
  • медь (труба для теплоносителя) и алюминий (внешний кожух);
  • сталь и алюминий;
  • сталь;
  • чугун.

Чугунные батареи считаются «классикой» обогревательных приборов. Тяжелые громоздкие «гармошки» всем известны со времен советской эпохи. Они постепенно вытесняются новыми моделями в стиле ретро из того же чугуна. Покупатели все чаще отдают предпочтение более современным биметаллическим радиаторам.

Хотя чугун долго разогревается, такие батареи пользуются популярностью и завидным спросом потребителей. Новые модели чугунного радиатора типа МС 140 надежные, дешевые, стойкие к перепадам давления в системе, при условии надежного сочленения с трубами при монтаже. При отключении чугунные «гармошки» долго держат тепло, хотя прогреваются дольше других разновидностей. У новых разработок улучшенный дизайн, часто есть ножки для напольного монтажа. Сравнение тепловой инертности (темпов прогревания) и общих показателей представлено в таблице 1.

Таблица 1.

Параметры / металлЧугунСталь панельныеСталь трубчатыеБиметаллАлюминий
ФорматСекцииЦельныеЦельныеСекцииСекции
Тепловая инертностьВысокаяНизкаяНизкаяНизкаяНизкая
Стойкость к коррозииВысокаяСредняяСредняяСредняяСредняя

Изделия из алюминия со стальной трубкой под теплоноситель – рекордсмены по КПД. На сегодня 1 секция биметаллического радиатора намного быстрее прогревается и отдает больше тепла в атмосферу помещения, чем изделиях из других материалов. При предельной температуре наполнителя слышен характерный треск, поскольку у алюминия и стали разная теплопроводность и степень расширения при нагревании.

Биметаллические радиаторы могут состоять из меди и алюминия с покрытием и без

Также есть батареи на основе медной трубки в алюминиевом кожухе – это самые дорогие биметаллические блоки. У них самые лучшие характеристики, высокая тепловая отдача и наиболее продолжительный срок эксплуатации. Недостатки – высокая стоимость и сложности в монтаже (лучше его доверить профессионалам).

Полезный совет! Оценивая эффективность разных моделей из одного металла, учитывают толщину стенки секции или трубки. Эти параметры должны быть указаны в описании к модели.

Радиаторы отопления из алюминия легче и дешевле, хотя немного уступают биметаллу по основным параметрам, включая мощность секции на1 квадратный метр. Трубчатые модели отличаются приятным дизайном, их легко перекрашивать под цвет помещения. Основной недостаток – вероятность деформации и протечки в мечтах сочленения при гидроударах и предельном давлении. По этой причине специалисты рекомендуют приобретать их для отопления частного сектора.

Стальной корпус отлично противостоит перепадам температур, меньше загрязняется, имея гладкую оцинкованную внутреннюю поверхность. Относительно небольшая цена, высокие темпы разогрева и хороший КПД – определяющие показатели, объясняющие их популярность. Однако со временем внутренний защитный слой разрушается под воздействием абразивных частиц теплоносителя.

голоса
Рейтинг статьи
Читать еще:  Лист с перфорацией из нержавеющей стали
Ссылка на основную публикацию
Adblock
detector