E-polirovka.ru

2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Классификация легированных сталей по назначению

Классификация легированных сталей

По химическому составу стали делятся в зависимости от того, какими элементами она легирована: хромистая, хромоникелевая и т.д.

По количеству легирующих элементов стали подразделяют на: низко- (до 2,5 %), средне-(2,5-10 %) и высоколегированные (выше 10 %).

По структуре стали делятся на классы: ферритный, перлитный, бейнитный, мартенситный, аустенитный и ледебуритный (карбидный). При охлаждении легированных сталей из аустенитного состояния можно получить различные структуры – перлит, мартенсит, аустенит. Обусловлено это тем, что С-образные кривые под влиянием большинства легирующих элементов смещаются вправо по оси времени (см. рис. 5.1), температуры мартенситного превращения: МН и МК – в область более низких температур. Стали перлитного класса обычно низколегированные (30Х, 55С2), мартенситного – среднелегированные (40Х13, Р6М5), аустенитного – высоколегированные (120Г13, 55Х20Г9АН4).

По назначению стали делятся на: конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Конструкционные легированные стали – низко- (0,1-0,25 %) и среднеуглеродистые (0,3-0,6 %). Легирующие элементы добавляют для увеличения прокаливаемости (Cr, Mn, Mo), снижения порога хладоломкости (Ni). Обозначения в конце марки: ПП – сталь повышенной прокаливаемости, Л – литейная, К – сталь для котлов и др.

Строительные делят на стали для сварных металлоконструкций и арматурные для армирования железобетонных конструкций.

Свариваемые строительные стали предназначены для изготовления конструкций мостов, ферм, котлов, газо- и нефтепроводов и т. д. Отличительное их технологическое свойство – хорошая свариваемость, которая зависит от содержания углерода (не более 0,25 %). Обычно используют низколегированные, низкоуглеродистые стали: 09Г2С, 17ГС, 15ГФ, 14Г2АФД, 10ХСНД и др.

Главный недостаток углеродистых свариваемых строительных сталей (Ст0, Ст2)– низкая хладостойкость. Проблема повышения прочности и надежности при эксплуатации в Сибири и районах крайнего Севера решается с помощью применения низколегированных сталей (18Г2С, 25Г2С, 35ГС), упрочненных и неупрочненных.

Арматурные строительные стали предназначены для изготовления: ненапряженных железобетонных конструкций – стали обыкновенного качества (Ст3, Ст5); предварительно напряженных – средне- и высокоуглеродистые стали в горячекатаном состоянии, упрочненные.

Автоматные стали специально созданы для изготовления деталей в массовом производстве (например, крепежные изделия). Изготовление деталей должно быть высокотехнологичным, производительным, с высокими требованиями по размерам и чистоте поверхности. От материала не требуются высокие механические свойства. Стали содержат (0,08-0,45 %) углерода, повышенное количество серы (0,1-0,3 %), фосфора (0,05 %), марганца (0,7-1,0 %), а также селен, кальций, свинец. Стали маркируют буквой А и цифрами, обозначающими содержание углерода в сотых долях процента: А12, А20, А30. Присутствие свинца (0,15-0,3 %) обозначается буквой С (АС11, АС14), кальция – буквой Ц (АЦ45Х, АЦ40Г2), селена – буквой Е (А35Е).

Сера находится в виде неметаллических включений – сульфидов, которые нарушают сплошность металла в зоне резания и способствуют получению легко ломающейся стружки. Фосфор повышает твердость и прочность, что также способствует образованию хрупкой стружки и получению обработанной поверхности высокого качества.

В легированных автоматных сталях повышенной обрабатываемости, включения свинца, селена, теллура и кальция играют роль смазки и препятствуют схватыванию инструмента с материалом заготовки. Это облегчает образование и отделение стружки. Для увеличения скорости резания свинец заменяют селеном.

Для получения высоких механических свойств автоматные стали, дополнительно легируют марганцем, кремнием, хромом, молибденом: (АС30ХМ, АС38ХГМ).

Конструкционные стали общего назначения (в том числе цементуемые, улучшаемые, азотируемые)

Углеродистые стали применяются при изготовлении мелких деталей, что связано с их низкой прокаливаемостью. От материала не требуются высокие механические свойства, Повышение механических свойств достигается с помощью оптимального легирования.

Для изготовления деталей, подвергаемых цементации или нитроцементации, используются малоуглеродистые (до 0,25% С) низко- и среднелегированные стали. Легирование хромом (стали 15Х, 20Х) позволяет применять после цементации закалку в масло вместо закалки в воду. Это уменьшает коробление и образование трещин. Увеличение степени легирования хромом, дополнительное легирование никелем, молибденом, вольфрамом увеличивает прокаливаемость крупногабаритных изделий (стали 20ХН, 12ХН3А, 18Х2Н4ВА, 30ХМА).

Улучшаемые стали – основным методом упрочнения изделий по всему сечению является улучшение (закалка с высоким отпуском). Первая группа – углеродистые стали (Ст35, 40, 45, 50), которые прокаливаются насквозь при диаметре до 12 мм. Они применяются для изготовления изделий малых сечений. Вторая группа – хромистые стали (30Х, 40Х), у которых критический диаметр при закалке в масле составляет 15-30 мм. В третью группу входят стали типа 30ХМ, 40ХГ, 30ХГТ, 30ХГС, у которых критический диаметр 30-60 мм. Четвертая группа – стали типа 40ХН, 40ХНМ – 35-70 мм. Пятая группа – комплексно легированные стали, например, 38ХН3МФА – до 200 мм.

Азотируемые стали относятся к группе улучшаемых сталей, поскольку в процессе азотирования они подвергаются нагреву до температур, соответствующих высокому отпуску.

Высокопрочные стали(предел прочности более 1500 МПа) – это комплексно-легированные мартенситостареющие стали (МСС) и стали с пластичностью, наведенной превращениями (ПНП-стали).

МСС марки 03Н18К9М5Т (0,03 % С) после закалки имеют структуру безуглеродистого мартенсита. Упрочнение происходит при распаде мартенсита и выделении дисперсных включений типа Ni3Ti, Fe2Mo и др. Это явление называется старением мартенсита, сталь – мартенситостареющей. Стали применяют в самолето- и ракетостроении, криогенной технике и при повышенных температурах (до 450 °С).

ПНП-стали – стали аустенитного класса. После закалки сталь марки 30Х9Н8М4Г2С2 имеет аустенитную структуру, т. к. точка начала мартенситного превращения лежит ниже 0 °С. Последующая пластическая деформация при 400-600 °С вызывает явления наклепа и выделение карбидов, что упрочняет сталь. Область применения: силовые детали авиационных конструкций, броневой лист и др.

Рессорно-пружинные стали предназначены для изготовления пружин, упругих элементов и рессор различного назначения. Они должны обладать высоким сопротивлением к малым пластическим деформациям, при достаточной пластичности и вязкости. Для получения этих свойств сталь должна содержать более 0,5-0,7 % углерода и быть подвергнута термической обработке – закалке и среднему отпуску или деформационному упрочнению (наклепу).

Углеродистые стали 65Г, 70, 75 и У10 применяют для пружин малого сечения, закаливаемых в масле и испытывающих невысокие напряжения. Кремнистые стали 55С2, 60С2А, 70С3А имеют высокие пределы текучести и упругости, поскольку кремний повышает прокаливаемость. Стали типа 50ХА, 50ХФА, 55ХГР обладают повышенной усталостной прочностью при рабочих температурах до 300 °С.

Стали для шариковых и роликовых подшипников. Для изготовления тел качения и подшипниковых колец малых сечений используют хромистую сталь ШХ15, больших сечений – сталь повышеной прокаливаемости – ШХ15СГ. Сталь ШХ15 содержит около 1 % углерода и 1,5 % хрома. Сталь ШХ15СГ содержит также повышенное количество марганца (1 %) и кремния (0,5 %). Термическая обработка подшипниковых сталей состоит из закалки от температуры 850 °С и низкотемпературного отпуска. Достигается твердость не ниже 62 HRC. Подшипники, работающие в агрессивных средах, изготавливаются из нержавеющих сталей с высоким содержанием хрома (95Х18, 110Х18).

Инструментальные стали предназначены для изготовления различных инструментов: режущего, штампового и мерительного. Режущий инструмент работает в условиях высоких контактных нагрузок и трения с обрабатываемым металлом. Для обеспечения требуемой точности изготовления геометрия и свойства режущей кромки не должны изменяться в процессе работы. Материал инструмента должен обладать высокой твердостью (60 HRC), износостойкостьюи достаточной ударной вязкостью, чтобы сохранять геометрию режущей кромки и сопротивляться разрушению при динамических нагрузках.

При резании происходит нагрев режущей кромки инструмента. Поэтому основное требование, предъявляемое к инструментальным материалам – теплостойкость (красностойкость) – способность сохранять твердость и режущие свойства при длительном нагреве. По назначению и теплостойкости выделяют несколько подгрупп сталей:

а) для режущего инструмента, работающего с небольшим разогревом до 350 °С (стали ХМФ, 9ХС);

б) для режущего инструмента, работающего в тяжелых условиях, с разогревом до 500-650 °С (быстрорежущие стали Р18, Р9, Р6М5);

в) для штампов холодного деформирования (стали ХВГ, Х6ВФ);

г) для штампов горячего деформирования (стали ХВ4Ф, Х12МФ);

д) для измерительного инструмента (стали 9Х1, 9ХВГ) и т.д.

Быстрорежущие стали применяются для изготовления инструмента, работающего при значительном нагружении и нагреве (600 °С) режущих кромок. Стали легированы карбидообразующими элементами: вольфрамом, молибденом, хромом, ванадием.

Маркируются буквой «Р» (rapid – быстрый), числом, показывающим содержание вольфрама, буквами и цифрами, указывающими дополнительные легирующие элементы и их количество. В марках быстрорежущих сталей не указывают углерод (более 1 %), хром (более 4 %), ванадий (более 2 %), молибден до 1 %. Например, Р18, Р9К5 и др.

После прокатки или ковки быстрорежущие стали подвергают отжигу для снижения твердости и повышения обрабатываемости резанием. Сталь выдерживают при 800-850 °С до полного превращения аустенита в перлитно-сорбитную структуру с избыточными карбидами. Высокую твердость и теплостойкость при удовлетворительной прочности и вязкости инструменты из быстрорежущих сталей приобретают после закалки и многократного отпуска.

При нагреве под закалку необходимо обеспечить максимальное растворение в аустените труднорастворимых карбидов вольфрама, молибдена и ванадия. Такая структура увеличивает прокаливаемость и позволяет получить после закалки высоколегированный мартенсит с высокой теплостойкостью. Температура закалки – 1220-1280 °С.

Для предотвращения образования трещин и деформации инструмента из-за низкой теплопроводности стали нагрев под закалку проводят с одним или двумя промежуточными прогревами в расплавах солей. Инструменты простой формы закаливают в масле, сложной – в расплавах солей (KNO3, NaNO3) при 250-400 °С.

После закалки структура быстрорежущей стали состоит из высоколегированного мартенсита (0,3-0,4 % углерода), нерастворенных при нагреве избыточных карбидов, остаточного аустенита (20-30 %). Последний снижает твердость, режущие свойства инструмента и его присутствие недопустимо.

При последующем отпуске из остаточного аустенита выделяются дисперсные карбиды, легированность аустенита уменьшается, и он претерпевает мартенситное превращение. Обычно применяют трехкратный отпуск при 550-570 °С в течение 45-60 мин. Число отпусков может быть сокращено после обработки стали холодом, в результате которой уменьшается содержание остаточного аустенита. Обработке холодом подвергают инструменты простой формы. Твердость после закалки 62-63 HRC, после отпуска она повышается до 63-65 HRC.

Читать еще:  Швеллеры no 16 сталь марки ст3пс5

Для дальнейшего повышения твердости, износостойкости и коррозионной стойкости режущих инструментов применяют цианирование, азотирование, обработку паром и другие технологические операции поверхностного упрочнения. Их выполняют после окончательной термообработки, шлифования и заточки инструментов.

Стали для ударных инструментов должны обладать повышенной вязкостью для предупреждения поломок и выкрашивания режущих кромок инструмента. Необходимые свойства обеспечиваются соответствующим легированием. Хромокремнистые стали (4ХС, 6ХС) прокаливаются насквозь при диаметре 50-60 мм (охлаждение в масле), хромовольфрамокремнистые (5ХВ2СФ, 6ХВ2С) – до 70-80 мм. Предназначены: для изготовления пневматического инструмента (зубил, обжимок); вырубных, обрезных и чеканочных штампов, работающих с повышенными ударными нагрузками; рубильных ножей, штемпелей, клейм; прошивочного, деревообрабатывающего инструмента. Для повышения износостойкости инструмента проводят химико-термическую обработку (азотирование, нитроцементация), обеспечивающую увеличение поверхностной твердости без заметного снижения сопротивления хрупкому разрушению.

Легированные стали: классификация и маркировка

Легированная сталь — это сталь, содержащая специальные легирующие добавки, которые позволяют в значительной степени менять ряд ее механических и физических свойств. В данной статье мы разберемся, что из себя представляет классификация легированных сталей, а также рассмотрим их маркировку.

Круглый прокат из легированной стали

Классификация легированных сталей

По содержанию в составе стали углерода идет разделение на:

  1. низкоуглеродистые стали (до 0,25% углерода);
  2. среднеуглеродистые стали (до 0,25% до 0,65% углерода);
  3. высокоуглеродистые стали (более 0,65% углерода).

В зависимости от общего количества в их составе легирующих элементов, которые содержит легированная сталь, она может принадлежать к одной из трех категорий:

  1. низколегированная (не более 2,5%);
  2. среднелегированная (не более 10%);
  3. высоколегированная (от 10% до 50%).

Свойства, которыми обладают легированные стали, определяет и их внутренняя структура. Поэтому признаку классификация легированных сталей подразумевает разделение на следующие классы:

  1. доэвтектоидные — в составе присутствует избыточный феррит;
  2. эвтектоидные — сталь имеет перлитную структуру;
  3. заэвтектоидные — в их структуре присутствует вторичные карбиды;
  4. ледебуритные — в структуре присутствует первичные карбиды.

По своему практическому применению легированные конструкционные стали могут быть: конструкционные (подразделяются на машиностроительные или строительные), инструментальные, а также стали с особыми свойствами.

Назначение конструкционных легированных сталей:

  • Машиностроительные — служат для производства деталей всевозможных механизмов, корпусных конструкции и тому подобного. Отличаются тем, что в подавляющем большинстве случаев проходят термическую обработку.
  • Строительные — чаще всего используются при изготовлении сварных металлоконструкций и термической обработке подвергаются в редких случаях.

Классификация машиностроительных легированных сталей выглядит следующим образом.

  • Жаропрочные стали активно используются для производства деталей, предназначенных для работы в сфере энергетики (например, комплектующие паровых турбин), а также из них делают особо ответственный крепеж. В качестве легирующих добавок в них используют хром, молибден, ванадий. Жаропрочные относятся к среднеуглеродистым, среднелегированным, перлитным сталям.
  • Улучшаемые (из категорий среднеуглеродистых, низко- и среднелегированных) стали, при производстве которых используют закалку, применяются для изготовления сильно нагруженных деталей, испытывающих нагрузки переменного характера. Отличаются чувствительностью к концентрации напряжения в рабочей детали.
  • Цементуемые (из категорий низкоуглеродистых, низко- и среднелегированных) стали, как можно понять по названию, подвергаются цементации и следующей после нее закалке. Их применяют для изготовления всевозможных шестерен, валов и других похожих по назначению деталей.

Зависимость толщины цементованного слоя от температуры и времени обработки

Классификация строительных легированных сталей подразумевает их разделение на следующие виды:

  • Массовая — низколегированные стали в виде труб, фасонного и листового проката.
  • Мостостроительная — для автомобильных и ж/д мостов.
  • Судостроительная хладостойкая, нормальная и повышенной прочности — хорошо противостоит хрупкому разрушению.
  • Судостроительная хладостойкая высокой прочности — для сварных конструкций, которым предстоит работать в условиях низких температур.
  • Для горячей воды и пара — допускается рабочая температура до 600 градусов.
  • Низкоопущенные высокой прочности — применяются в авиации, чувствительны к концентрации напряжений.
  • Повышенной прочности с применением карбонитритного упрочнения, создающим мелкозернистую структуру стали.
  • Высокой прочности с применением карбонитритного упрочнения.
  • Упрочненные прокаткой при температуре 700-850 градусов.

Применение инструментальных легированных сталей

Инструментальная легированная сталь широко используется при производстве разнообразного инструмента. Но помимо явного превосходства над углеродистой сталью в плане твердости и прочности, у легированной стали есть и слабая сторона — более высокая хрупкость. Поэтому для инструмента, который активно подвергается ударным нагрузкам, такие стали не всегда подходят. Тем не менее при производстве огромного перечня режущего, ударно-штампового, измерительного и прочего инструмента именно инструментальные легированные стали остаются незаменимыми.

Отдельно можно отметить быстрорежущую сталь, отличительными особенностями которой являются крайне высокая твердость и красностойкость до температуры 600 градусов. Такая сталь способна выдерживать нагрев при высокой скорости резания, что позволяет увеличить скорость работы металлообрабатывающего оборудования и продлить срок его службы.

К отдельной категории относятся легированные конструкционные стали, наделенные особыми свойствами: нержавеющие, с улучшенными электрическими и магнитными характеристиками. От того, какие элементы, а также в каких количествах преимущественно содержатся в них, они могут быть хромистыми, никелевыми, хромоникельмолибденовыми. Также они делятся на трех-, четырех- и более компонентные по числу содержащихся в них легирующих добавок.

Легирующие элементы и их влияние на свойства сталей

Маркировка легированных сталей указывает на то, какие добавки в ней содержатся, а также на их количественное значение. Но также важно знать и то, какое именно влияние на свойства металла оказывает каждый из этих элементов в отдельности.

Добавка хрома увеличивает коррозионную стойкость, повышает прочность и твердость, является основным компонентом при создании нержавеющей стали.

Добавление никеля повышает пластичность, вязкость стали и коррозионную стойкость.

Титан уменьшает зернистость внутренней структуры, повышая прочность и плотность, улучшает обрабатываемость и коррозионную стойкость.

Присутствие ванадия уменьшает зернистость внутренней структуры, что повышает текучесть и порог прочности на разрыв.

Добавка молибдена дает возможность улучшить прокаливаемость, повысить коррозионную устойчивость и снизить хрупкость.

Вольфрам повышает твердость, не дает зернам увеличиваться при нагреве и снижает хрупкость при отпуске.

При содержании до 1-15% кремний повышает прочность, сохраняя вязкость. При увеличении процента содержания кремния повышается магнитопроницаемость и электросопротивление. Также данный элемент увеличивает упругость, стойкость к коррозии и сопротивляемость к окислению, но также повышает хрупкость.

Введение кобальта увеличивает ударопрочность и жаропрочность.

Добавление алюминия способствует повышению окалиностойкости.

Таблица назначения некоторых видов стали

Отдельно стоит упомянуть примеси и их влияние на свойства сталей. Любая сталь всегда содержит технологические примеси, так как полностью удалить их из состава стали чрезвычайно трудно. К такого рода примесям относятся углерод, серу, марганец, кремний, фосфор, азот и кислород.

Оказывает на свойства стали очень значительное влияние. Если его содержится до 1,2%, то углерод способствует повышению твердости, прочности, предела текучести металла. Превышение указанного значения способствует тому, что начинает значительно ухудшаться не только прочность, но и пластичность.

Если количество марганца не превышает 0,8%, то он считается технологической примесью. Он призван повысить степень раскисления, а также противостоять негативному влиянию серы на сталь.

При превышении содержания серы выше 0,65% механические свойства стали существенно снижаются, речь идет об уменьшении уровня пластичности, коррозионной стойкости, ударной вязкости. Также высокое содержание серы негативно влияет на свариваемость стали.

Даже незначительное превышение содержания фосфора выше необходимого уровня чревато повышением хрупкости и текучести, а также снижением вязкости и пластичности стали.

Азот и кислород

При превышении определенных количественных значений в составе стали вкрапления данных газов повышают хрупкость, а также способствуют понижению ее выносливости и вязкости.

Слишком большое содержание водорода в стали ведет к увеличению ее хрупкости.

Маркировка легированных сталей

К категории легированных относится большое разнообразие сталей, что и вызвало необходимость в систематизации их буквенно-цифрового обозначения. Требования к их маркировке оговаривает ГОСТ 4543-71, согласно которому сплавы, наделенные особыми свойствами, обозначаются маркировкой, где на первой позиции стоит буква. По этой букве как раз и можно определить, что сталь по своим свойствам относится к определенной группе.

Пример расшифровки маркировки легированной стали

Так, если маркировка легированных сталей начинается с букв «Ж», «Х» или «Е» — перед нами сплав нержавеющей, хромистой или магнитной группы. Сталь, которая относится к нержавеющей хромоникелевой группе, обозначается буквой «Я» в ее маркировке. Сплавы, относящиеся к категории шарикоподшипниковых и быстрорежущих инструментальных, обозначаются буквами «Ш» и «Р».

Стали, относящиеся к легированным, могут принадлежать к категории высококачественных, а также особо высококачественных. В таких случаях в конце их марки ставится буква «А» или «Ш» соответственно. Стали, которые обладают обычным качеством, таких обозначений в своей маркировке не имеют. Специальное обозначение также имеют сплавы, которые получены прокатным методом. В таком случае в маркировке присутствует буква «Н» (нагартованный прокат) или «ТО» (термически обработанный прокат).

Точный химический состав любой легированной стали можно посмотреть в нормативных документах и справочной литературе, но получить такую информацию позволяет и умение разбираться в ее маркировке. Первая цифра позволяет понять, сколько углерода (в сотых долях процента) содержит легированная сталь. После этой цифры в марке перечисляются буквенные обозначения легирующих элементов, которые содержатся дополнительно.

Обозначение легирующих элементов в маркировке стали

После каждой такой буквы проставляется количественное содержание указанного элемента. Выражается это содержание в целых долях. После буквы, обозначающей элемент, может не стоять никакой цифры. Означает это то, что его содержание в стали не превышает 1,5%. Государственный стандарт 4543-71 регламентирует обозначение легирующих добавок, входящих в состав легированной стали: А — Азот, Б — Ниобий, В —Вольфрам, Г — Марганец, Д — Медь, К — Кобальт, М — Молибден, Н — Никель, П — Фосфор, Р — Бор, С — Кремний, Т — Титан, Ц — Цирконий, Ф — Ванадий, Х — Хром, Ю — Алюминий.

Читать еще:  Сколько углерода содержится в стали?

Использование легированных сталей

Сегодня сложно найти сферу жизни и деятельности, в которых бы не использовалась легированная сталь. Из инструментальных и конструкционных сталей производится практически любой инструмент: резцы, фрезы, штампы, измерительные устройства, шестерни, пружины, подвески, растяжки и многое другое. Нержавеющие легированные стали активно используются и в быту, из них изготавливают посуду, корпуса и другие элементы многих видов бытовой техники.

Легированные стали по причине их высокой стоимости используются только для производства самых ответственных конструкций и деталей, где изделия из других металлов просто не смогут выполнить возложенные на них задачи.

Легированная сталь

Содержание статьи

  • Характеристика
    • Виды
    • Назначение
  • Свойства
  • Марки

В современном мире имеется большое количество разновидностей стали. Это один из самых востребованных материалов, который используется практически во всех отраслях промышленности.

Характеристика легированных сталей

Легированная сталь представляет собой сталь, которая кроме обычных примесей оснащена еще и дополнительными добавочными веществами, которые необходимы для того, чтобы она соответствовала тем или иным химическим и физическим требованиям.

Обычная сталь состоит из железа, углерода и примесей, без которых невозможно себе представить данный материал. В легированную сталь добавляются дополнительные вещества, которые получили название легирующих. Они используются для того, чтобы сталь стала обладать такими свойствами, которые необходимы в тех или иных ситуациях.

В большинстве случаев в качестве легирующих элементов к железу, примесям и углероду добавляются: никель, ниобий, хром, марганец, кремний, ванадий, вольфрам, азот, медь, кобальт. Также не редко в таком материале отмечаются такие вещества, как молибден и алюминий. Для придания прочности материалу в большинстве случаев добавляется титан.

Такой вид стали имеет три основные категории. Отношение легированной стали к той или иной группе обусловлено тем, сколько в ней содержится стали и примесей, а также легированных добавок.

Виды легированной стали

Есть три основных вида стали с легирующими элементами:

  • Низколегированная сталь.

Она характеризуется тем, что в ней содержится около двух с половиной процентов легирующих дополнительных элементов.

  • Среднелегированная сталь.

Данный материал имеет в своем составе от 2.5 до 10 процентов легирующих дополнительных веществ.

  • Высоколегированная сталь.

К данному виду относятся стальные материалы, количество легирующих добавок в которых превышает десяти процентов. Количество этих компонентов в такой стали может достигать пятидесяти процентов.

Назначение легированной стали

Легированную сталь широко применяют в современной промышленности. Она обладает высоким уровнем прочности, что позволяет изготовлять из нее оборудование для резки и рубки металлического проката самых разных видов.

По своему назначению стали легированного типа могут быть представлены большим количеством групп.

Основными из них являются:

  • конструкционная легированная сталь,
  • инструментальная легированная сталь,
  • легированная сталь с особыми химическими и физическими свойствами.

Характеристики легированных сталей могут быть разнообразными. Они их приобретают благодаря соотношению основных элементов. Стали такого типа являются в любом случае более прочными и устойчивыми к образованию коррозии.

Свойства легированной стали

Свойства легированных сталей являются разнообразными. Они главным образом определяются теми добавками, которые применяются в качестве легирующих при производстве отдельных видов стальных материалов.

В зависимости от добавленных легирующих компонентов сталь приобретает следующие качества:

  • Прочность. Данное свойство приобретает после добавления в ее состав хрома, марганца, титана, вольфрама.
  • Устойчивость к образованию коррозии. Это качество появляется под воздействием хрома, молибден.
  • Твердость. Сталь становится боле твердой благодаря хрому, марганцу и другим элементам.

Внимание: Стоит отметить, что для того, чтобы легированная сталь была более прочной и устойчивой к внешнему влиянию окружающей среды необходимое содержание хрома не должно быть менее двенадцати процентов.

Сталь легированного типа при правильном процентном соотношении всех входящий в нее элементов не должна менять свои качестве при температуре нагревания до шестисот градусов Цельсия.

Производство легированной стали.

Марки легированной стали

Марки легированной стали являются различными. Они представлены в большом многообразии. В зависимости от назначения стали определяется ее маркировка.

Сегодня имеется большое количество требований к маркировке легированной стали. Для данного процесса используются цифровые и буквенные обозначения. Сначала при маркировке используются цифры. Они являются показателями того, сколько содержится в том или ином виде легированной стали сотых долей углерода. После цифр стоят буквы, которые являются обозначением того, какие легирующие добавки были использованы при производстве того или иного легированного типа стали.

После букв могут стоять цифры, обозначающие количество легирующего вещества в составе стального материала. Если после обозначения какого-либо легирующего элемента не стоит цифровое обозначение, то его в составе имеется минимальное количество, не достигающее даже одного процента.

Таблица 1. Сопоставление марок стали типа Cm и Fе по международным стандартам ИСО 630-80 и ИСО 1052-82.

Марки стали
СтFeСтFe
СтОFe310-0Ст4кпFe430-A
Ст1кпСт4псFe430-B
Ст1псСт4спFe430-C
Ст1спFe430-D
Ст2кпСт5псFe510-B, Fe490
Ст2псСт5ГпсFe510-B, Fe490
Ст2спСг5спFe510-C, Fe490
СтЗкпFe360-A
СтЗпсFe360-BСт6псFe590
СтЗГпсFe360-BСтбспFe590
СтЗспFe360-CFe690
СтЗГспFe360-C
Fe360-D

Таблица 2. Условные обозначения легирующих элементов в металлах и сплавах

ЭлементСимволОбозначение элементов в марках металлов и сплавовЭлементСимволОбозначение элементов в марках металлов и сплавов
черныецветныечерныецветные
АзотNАНеодимNdНм
АлюминийА1ЮАНикельNiН
БарийВаБрНиобийNbБНп
БериллииBeЛОловоSnО
БорВрОсмийOsОс
ВанадииVфВамПалладийPdПд
висмутBiВиВиПлатинаPtПл
ВольфрамWВПразеодимPrПр
ГадолинийGdГнРенийReРе
ГаллийGaГиГиРодийRhRg
ГафнииHfГфРтутьHgР
ГерманийGeГРутенийRuPv
ГольмийНоГОМСамарийSmСам
ДиспрозийDvДИМСвинецPbС
ЕвропийEuЕвСеленSeКСТ
ЖелезоFeЖСереброAgСр
ЗолотоAuЗлСкандийScС км
ИндийInИнСурьмаSbCv
ИридийIrИТаллийTlТл
ИттербийYbИТНТанталТаТТ
ИттрийYИМТеллурТеТ
КадмийCdКдКдТербийTbТом
КобальтCoККТитанTiТТПД
КремнийSiСКр(К)Т’лийTmТУМ
ЛантанLaЛаУглеродСУ
ЛитийLiЛэФосфорPпФ
ЛютецийLuЛюнХромCrхХ(Хр)
МагнийMgШМгЦерийCeСе
МарганецMnГМц(Мр)ЦинкZnЦ
МедьCuДМЦирконийZrЦЦЭВ
МолибденMoМЭрбийErЭрм

Статьи по теме

Алкидная эмульсия

Требования защиты окружающей среды вызвали интерес к алкидным эмульсиям. Стабильные эмульсии можно получить из большинства алкидов при условии, что вязкость смол не слишком большая и прилагаемых сдвиговых сил достаточно для эмульгирования.

Характеристики нержавейки

В современном мире нержавеющая сталь является незаменимым материалом при производстве разных разновидностей изделий. Она применяется в пищевой, медицинской, металлургической и военной промышленности.

Марки нержавеющей стали

В начале прошлого столетия специалистам в области металлургической промышленности удалось заметить, что взаимодействие хрома и кислорода является лучше, чем с железом.

Классификация стали по степени легированности и по назначению

Классификация стали по степени легированности и по назначению

  • Классификация сталей по степени легирования и назначению По общему содержанию легирующих элементов, присутствующих в нем, легированные стали подразделяются на низколегированные, среднелегированные и высоколегированные. Легированная сталь двигаясь по доктрине низколегированная 68 основа Мягкая сталь обычно относится к низкоуглеродистой стали, а общий вес легирующих элементов не превышает 3-4%.

In в среднелегированной стали общее содержание легирующих элементов с различным содержанием углерода колеблется от 4 до 10%, а в высоколегированной стали содержание легирующих элементов может достигать от 30 до 50%. Кроме того, на практике при характеристике легирования стали очень часто учитываются также качество стали и стоимость легирующих элементов. Поэтому в зависимости от состава сталь с небольшим содержанием легирующих элементов классифицируют как средний

сплав, а средний сплав иногда называют высоким сплавом и т. д. Людмила Фирмаль

Например, высококачественной хром-никель-молибден конструкционной стали с суммарным содержанием легирующих элементов около 5% обычно называют высоколегированной стали. Никель и молибден, которые являются дорогими легирующими элементами, входят в эту сталь. В зависимости от назначения легированная сталь делится на 3 группы. а) структура, б) инструменты, в) сталь с особыми физико-химическими свойствами. Каждой такой группе стали соответствует определенное содержание углерода и легирующих элементов. а.

Конструкционные стали * Наиболее широко используемая-конструкционная сталь. Количество конструкционной легированной стали, потребляемой в промышленности, во много раз превышает общее количество инструментальной стали и стали со специальными физико-химическими свойствами. В группу конструкционных легированных сталей входят、 Сталь и механическая сталь. Конструкционная сталь производится в основном в виде низколегированного сплава металлургической промышленностью. Такая сталь применяется при изготовлении крупногабаритных инженерных конструкций и конструкций мостов, строительных рам, кранов и др.

  • Конструкционная сталь требует хорошей свариваемости, повышенной прочности при высокой вязкости и повышенной коррозионной стойкости. Такие стали используются очень часто (без термической обработки)в условиях транспортировки. Сталь сплава инженерства разделена в цемент Это хорошая игра, но я не думаю, что это хорошая игра. Цементированный карбид содержит легирующие элементы от 0,15 до 0,25% С и до 5-6%.Основные требования к цементным сталям: высокая диффузия углерода от поверхности к внутренней поверхности изделия в процессе цементации, высокая поверхностная твердость-классификация сталей по степени легирования и назначению 69.

Ряд затвердевших цементных слоев и плавный переход от этого слоя к прочному и вязкому ядру изделия. Улучшенная сталь содержит 0,2-0,6% С, общее количество легирующих элементов составляет до 8-10%.Основные требования к таким сталям: хорошая закаливаемость, глубокие упрочняющие свойства, Высокая прочность в сочетании с пластичностью и ударной вязкостью, высокая износостойкость. b. инструментальная сталь Инструментальная легированная сталь、 Сталь с режущими и измерительными инструментами для горячих и холодных ударных инструментов. В Стали он содержит 0,7-2,0% С

для режущего и измерительного инструмента и 10 минут 1-20-25%для легирующих элементов. Людмила Фирмаль

Такая закаленная и закаленная сталь должна обладать максимально возможной твердостью, без хрупкости, высокой износостойкостью и хорошими режущими свойствами. В стали, используемой в кристаллизаторе, при горячей обработке металла 0,3-0,6% С и 2-10% легирующих элементов. Такая сталь должна обладать высокой прокаливаемостью и высокой стойкостью к отпуску. Поэтому даже при нагреве до рабочей температуры в процессе эксплуатации твердость не снижается, она обладает высокой износостойкостью (износостойкостью) и устойчива к термической усталости, которая проявляется в образовании трещин, деформации высоты рабочей поверхности в результате многократного нагрева и охлаждения в процессе эксплуатации.

Штамповочный инструмент для холодной обработки металла (штампы, пуансоны и др.) должны иметь максимально возможную твердость и высокий износ resistance. So, для производства холодной штамповки используются Эвтектоидные и сверхэвтектоидные стали почти того же состава, что и сталь для измерительного и режущего инструмента. С. Сталь со специальными физико-химическими свойствами Стали с особыми физико-химическими свойствами всегда высоколегированной.

Общее количество легирующих элементов в этой стали достигает 30-40%, а содержание углерода составляет 0,1-1,0%.Такая сталь, помимо определенных механических свойств, должна также обладать особыми (служебными) физико-химическими свойствами: хорошей коррозионной стойкостью, высоким электрическим сопротивлением, особым тепловым расширением, мягким или жестким магнитным полем и др.

Легированная сталь — описание, маркировка, состав и где применяется

Среди металлов на первом месте находится сталь – наиважнейший ресурс любого государства. Различают много видов и марок этого железо-углеродистого сплава. Ниже будет подробно рассказано о легированной стали — что это, чем она отличается от углеродистой (нелегированной) продукции, какая существует классификация сплавов и как расшифровывать маркировку.

Что такое сталь

Сплав на основе железа (не менее 45%) называют сталью. В зависимости от процентного содержания второго исходного компонента – углерода, различают сплавы высокоуглеродистые (0,6-2,14% С), среднеуглеродистые (0,25-0,6% С), и низкоуглеродистые (не более 0,25% С). Чем выше данный показатель, тем более прочная и упругая сталь, но в то же время с пониженной пластичностью и сопротивляемостью ударам.

Обязательными компонентами в составе сплава являются раскислители – марганец и кремний. Эти химические элементы присутствуют в незначительном количестве, и на свойства не влияют. Их цель – нейтрализация вредного действия кислорода.

Даже качественная сталь содержит вредные примеси, от которых нельзя избавиться. Это:

  • сера, из-за которой возникают трещины;
  • фосфор, увеличивающий хрупкость (хладноломкость);
  • азот, кислород, водород – разрыхлители структуры стали;
  • окислы и нитриды, приводящие к разрывам.

Кроме перечисленных компонентов, в углеродистых сплавах всегда есть и другие вещества, которые попадают вместе с исходными материалами при выплавке: медь, цинк, хром, никель, свинец. Уровень их содержания настолько ничтожен, что они не оказывают ни положительного, ни отрицательного влияния.

Свойства и виды сталей

Стали присущи такие свойства:

  • Физические: теплоемкость, электро- и теплопроводность, расширение при нагревании.
  • Механические: прочность, твердость, упругость, пластичность, вязкость, выносливость.
  • Химические: жаропрочность, окалиностойкость, огнеупорность, сопротивление коррозии.

Чтобы существенно изменить свойства сплава, в сталь вводятся легирующие элементы – другие металлы и неметаллы. Такая технология была создана еще в 19 ст. Стали называются легированными, если доля каждого элемента составляет не менее 0,1%.

Отличия

Сталь легированная от нелегированной отличается химическим составом. Первая, кроме железа и углерода, содержит большой набор дополнительных компонентов, которые оказывают влияние на ее свойства. Углеродистая (классическая) сталь содержит следы случайных примесей, которые не оказывают значительного влияния на ее свойства.

Другие отличия от обычных углеродистых сплавов:

  • устойчивость к коррозии и воздействию агрессивных сред;
  • искрение металла, если поднести его заточному кругу;
  • бывает низкая несущая способность;
  • более высокие затраты производства.

Легирующие добавки

Для легирования сталей используют химические элементы из разных групп таблицы Менделеева. Легирующие металлы (в русскоязычной маркировке сплавов обозначаются русскими буквами) вводятся в сплав для изменения следующих характеристик:

  • Никель (Н) – повышение теплоемкости, вязкости, пластичности, уменьшение хрупкости, что важно для обработки давлением.
  • Хром (Х) – повышение твердости и ударопрочности. Сильная защита от коррозии, поэтому много хрома в нержавейке.
  • Ниобий (Б) – улучшение устойчивости к кислотам.
  • Кобальт (К) – повышение жаропрочности, увеличение сопротивляемости ударам.
  • Медь (Д) – увеличение прочности, но с некоторым уменьшением уровня вязкости. Используется преимущественно в строительной стали.
  • Титан (Т) и цирконий (Ц) – снижение зернистости. Структура сплава становится однородной, что снижает вероятность появления трещин.
  • Вольфрам (В) и молибден (М) – повышение прочности при термической обработке, устойчивость к ржавлению.
  • Алюминий (Ю) – добавление стойкости к появлению окалин при высоких температурах.
  • Ванадий (Ф) – улучшение структуры, увеличение жаропрочности.

Список дополняют неметаллические добавки:

  • Марганец (Г) – уменьшение вредного влияния серы, фосфора и кислорода.
  • Кремний (С) – повышение прочности с сохранением вязкости.
  • Селен (Е) – улучшение текучести, облегчение механической обработки стальных деталей.
  • Бор (Р) – улучшение микрострутуры, повышение прокаливаемости.
  • Азот (А) – улучшение механических свойств, используется в высоколегированных сталях.

Расшифровка маркировки стали

Чтобы определить марку стали, разработано специальное обозначение, согласно ГОСТ 4543-71. В его основе цифры и буквы. Первая литера показывает, к какой группе сталей относится сплав. Например:

  • Я – хромоникелевая нержавейка;
  • А – автоматная сталь;
  • Ж – нержавейка;
  • Е – магнитная сталь;
  • Р – быстрорежущая;
  • Ш – шарикоподшипниковая;
  • ШХ – шарикоподшипниковая хромистая сталь.

Если буква отсутствует, это означает принадлежность к классическому сплаву с использованием добавок.

Первая цифра в маркировке обозначает сотые доли процентного содержания углерода. Далее идут буквы и цифры, указывающие на легирующие добавки и их содержание, также в процентах. Например, маркировку Х5Х18Н10 следует читать так: хромистая сталь, содержащая 0,05% углерода, 18% хрома, 10% никеля. На английском языке маркировка выглядит иначе: X5CrNi18-10.

  • ЕХ9К15М. Означает: магнитная хромистая сталь, содержит 0,09% углерода, 15% кобальта, не более 1% молибдена.
  • 38ХН3МФ: 0,38% углерода, менее 1% хрома, 3% никеля, молибдена и ванадия не более 1%.

Процентное соотношение добавок записывается целыми числами, без десятых и сотых долей.

В конце маркировки (справа) также могут присутствовать буквы: А – высококачественная, Ш – особовысококачественная сталь. Другие буквы обозначают способ производства: ТО (Т) – термически обработанная, Н – нагартованный прокат.

Классификация легированных сталей

Классификация и маркировка легированных сталей осуществляется по нескольким параметрам.

По качеству

В зависимости от количества вредных примесей (сера, фосфор), легированные стали бывают качественные (S≤0,04%, P≤0,035%), высококачественные (S≤0,025%, P≤0,025%), особо высококачественные: (S≤0,06%, P≤0,07%).

По количеству добавок

В зависимости от общего количества добавок, различают такие виды легированной стали:

  • Высоколегированная сталь: 10-50% легирующих добавок. Изделия максимально прочные, но и самые дорогие.
  • Среднелегированная: 2,5-10% добавок. Это самая ходовые марки.
  • Низколегированная: добавок не более 2,5%. Положительные качества улучшились, но на металлообработке заметно не сказались.

В зависимости от химического состава, стали называются: хромистые, хромоникелевые, хромоникельмолибденовые, марганцовистые и другие. В маркировке обозначаются соответствующими буквами.

По назначению

По практическому применению различают стали конструкционные (машиностроительные, строительные, улучшаемые, цементуемые), инструментальные (для штампов, режущего и измерительного инструментов) и с особыми свойствами.

Состав и применение легированных сталей

Применение сплавов обусловлено их химическим составом. Так, строительные низколегированные стали используются для металлических конструкций с равномерно распределенной нагрузкой между всеми элементами. Единственное требование – хорошая свариваемость.

Виды конструкционных сталей:

  • Улучшаемые, с высоким содержанием хрома, обогащенные бором, никелем, молибденом, марганцем. Предназначены для термообработки.
  • Пружинно-рессорные. Эти сплавы легируются кремнием, кобальтом, марганцем, бором, титаном. Используются в производстве транспорта.
  • Подшипниковые. Обладают повышенной твердостью и износостойкостью. Обязательно содержат хром и минимум неметаллических добавок.
  • Теплоустойчивые. Используются для производства паровых нагревателей.

Инструментальные стали для фрез, резцов, метчиков легируются хромом, ванадием, титаном и др. добавками. Это очень дорогие быстрорежущие сплавы, поэтому используются только в режущих плоскостях. Для измерительных инструментов сталь легируют хромом, вольфрамом и марганцем. Это обеспечивает твердость и сохранение первоначальных размеров.

Стали с особыми свойствами:

  • Высокопрочные. Это высоколегированные стали со специально подобранным составом. Применяются для изготовления ответственных узлов механизмов.
  • Нержавеющие, с добавками марганца и хрома. Применяются для работы в химически агрессивных средах. Используются для изготовления труб.
  • Износостойкие, с высоким содержанием марганца. Используются для изготовления стрелок на железных дорогах, гусениц, горного оборудования, ковшей экскаваторов.

К этой группе относятся также жаропрочные, жароустойчивые, магнитные, немагнитные, реостатные, с высоким электросопротивлением сплавы.

Стальной металлолом

Цена на стальной лом зависит от 2-х параметров: вид добавки и качество стали. Легирующие сплавы с высоким содержанием цветных металлов ценятся выше чугуна, (особенно нержавейка и быстрорез). При низком содержании цветных металлов стальной металлолом идет по цене черного металла.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]