E-polirovka.ru

0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие примеси в сталях считаются вредными?

Влияние примесей на свойства стали

При производстве сталии современная металлургия использует огромное количество примесей и добавок. Пропорции и количество легирующих элементов, как еще называют добавки, обычно составляют коммерческую тайну металлургической компании.

Углерод — неотъемлемая часть любой стали, так как сталь это сплав углерода с железом. Процентное содержание углерода определяет механические свойства стали. С увеличением содержания углерода в составе стали, твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость и свариваемость ухудшается.

Кремний — незначительное его содержание в составе стали особого влияния на ее свойства не оказывает. При повышении содержания кремния значительно улучшаются упругие свойства, магнитопроницаемость, сопротивление коррозии и стойкость к окислению при высоких температурах.

Марганец — в углеродистой стали содержится в небольшом количестве и особого влияния на ее свойства не оказывает. Однако он образует с железом твердое соединение повышающее твердость и прочность стали, несколько уменьшая ее пластичность. Марганец связывает серу в соединение MnS, препятствуя образованию вредного соединения FeS. Кроме того, марганец раскисляет сталь. Сталь в состав которой входит большое количество марганца приобретает существенную твердость и сопротивление износу.

Сера — является вредной примесью в составе стали, где она находится преимущественно в виде FeS. Это соединение придает стали хрупкость при высоких температурах — красноломкость. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость.
В углеродистой стали допустимое содержание серы — не более 0,07%.

Фосфор — также является вредной примесью в составе стали. Он образует с железом соединение Fe3P. Кристаллы этого соединения очень хрупки, вследствие чего сталь приобретает высокую хрупкость в холодном состоянии — хладноломкость. Отрицательное влияние фосфора наибольшим образом сказывается при высоком содержании углерода.

Легирующие компоненты в составе стали и их влияние на свойства:

Алюминий — сталь, состав которой дополнен этим элементом, приобретает повышенную жаростойкость и окалиностойкость.

Кремний — увеличивает упругость, кислостойкость, окалиностойкость стали.

Марганец — увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок при этом не уменьшает пластичности.

Медь — улучшает коррозионностойкие свойства стали.

Хром — повышает твердость и прочность стали, незначительно уменьшая пластичность, увеличивает коррозионностойкость. Содержание больших количеств хрома в составе стали придает ей нержавеющие свойства.

Никель — также как и хром придает стали коррозионную стойкость, а также увеличивает прочность и пластичность.

Вольфрам — входя в состав стали, образует очень твердые химические соединения — карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует расширению стали при нагреве, способствует устранению хрупкости при отпуске.

Ванадий — повышает твердость и прочность стали, увеличивает плотность стали. Ванадий является хорошим раскислителем.

Кобальт — повышает жаропрочность, магнитные свойства, увеличивает стойкость против ударных нагрузок .

Молибден — увеличивает красностойкость, упругость, предел прочности на растяжение, улучшает антикоррозионные свойства стали и сопротивление окислению при высоких температурах.

Титан — повышает прочность и плотность стали, является хорошим раскислителем, улучшает обрабатываемость и увеличивает коррозионностойкость.

Чистая сталь

Чистота стали является важным фактором ее качества. Поэтому потребность в более чистых сталях растет с каждым годом. Так называемые чистые стали – это обычно стали, в которых содержание примесей, таких как, фосфор, сера, кислород, азот, водород – иногда и углерод, а также неметаллических включения очень низкое.

Чистота стали — теория и практика

Повышение чистоты стали становится поэтому все более и более важной целью для ученых-металлургов, а также важной задачей для производителей чугуна и стали. Потребность в сталях с повышенными механическими свойствами вынуждает производителей стали повышать чистоту их конечной продукции. Чтобы достичь удовлетворительной чистоты стали необходимо контролировать и совершенствовать весь комплекс технологических операций в ходе всего процесса производства стали, такие как раскисление, легирование, вторичные металлургические обработки, разливка.

Что такое «чистая сталь»

Поскольку термин «чистая сталь» весьма расплывчатый, некоторые авторы вводят более точные формулировки такой стали:

  • «высокочистая сталь» – сталь с низким уровнем растворимых примесей;
  • «сталь с низким содержанием примесей» — примесей, которые возникают при переплавке стального лома;
  • «чистая сталь» — сталь с низким уровнем дефектов, которые связаны с присутствием оксидов.

Польза от чистоты стали

Хорошо известно, что индивидуальное и совместное воздействие углерода, фосфора, серы, азота, водорода и общего содержания кислорода в стали могут оказывать заметное влияние на свойства стали, такие как:

  • прочность при растяжении;
  • способность к формовке – значительному пластическому деформированию без образования трещин;
  • вязкость;
  • свариваемость;
  • сопротивление растрескиванию;
  • сопротивление коррозии;
  • усталостная прочность и так далее.

Кроме того, чистая сталь требует контроля за неметаллическими оксидными включениями – их размеров, распределения, морфологии и химического состава.

Контроль примесных элементов, которые были выше перечислены, может быть различным для различных типов и марок стали. Дело в том, что влияние обычных примесей в стали на их механические свойства в одних случаях может весьма значительным и вредным, а в других – незначительным и даже полезным.

Влияние серы и кислорода

Кислород и сера образуют оксидные и сульфидные включения.
Эти включения неблагоприятно влияют на:

  • пластические свойства (удлинение, сужение и способность к гибке);
  • способность к холодной ковке и волочению;
  • уровень низкотемпературной вязкости;
  • усталостную прочность.
Читать еще:  Как сделать чтобы сталь не ржавела?

Влияние углерода и азота

  • повышают закаливаемость стали, но снижают ее пластические и вязкие свойства;
  • способствуют формированию перлита и цементита со снижением пластичности и вязкости;
  • способствуют охрупчиванию стали через выделение карбидов и нитридов по границам зерен.

Влияние фосфора

Фосфор образует с железом твердый раствор:

  • повышает закаливаемость;
  • способствует отпускной хрупкости;
  • повышает склонность к охрупчиванию.

Примеси и включения в различных сталях

Как уже упоминалось, чистота стали зависит от количества, морфологии и размерного распределения неметаллических включений. Включения генерируют большинство дефектов в сталях. Поэтому для многих изделий ограничивают максимальный размер включений, однако общее количество включения и их распределение по размерам тоже является важными факторами чистоты стали.

Например, максимальное содержание углерода в автомобильных листовых сталях и сталях глубокой высадки не должно превышать 30 ppm и азота – 50 ppm, размер неметаллических включений не должен превышать 100 мкм.

В листовых сталях для штамповки консервных банок содержание углерода не должно быть более 30 ppm, азота – 40 ppm, а общее содержание кислорода – 20 ppm.

В легированных сталях для изготовления сосудов высокого давления содержание фосфора не превышает 70 ppm.

Трубные стали имеют ограничение по сере – 30 ppm, азоту – 50 ppm, кислороду – 30 ppm, а также по максимальному размеру неметаллических включений — 100 мкм.

В свариваемых стальных плитах содержание водорода не должно превышать 1,5 ppm.

Подшипниковая сталь содержит кислорода не более 10 ppm, а неметаллические включения — не больше 10 мкм.

Кордовая сталь для автомобильных покрышек может содержать не более: 2 ppm водорода, 40 ppm азота, 15 ppm кислорода, а также неметаллические включения не более 10 мкм.

Стали для производства толстых листов: водорода – не более 2 ppm, азота – не более 30-40 ppm, общего кислорода – не более 20 ppm, а также одиночные неметаллические включения – не более 13 мкм, кластеры включений – не более 200 мкм.

Стальная проволока: азота – не более 60 ppm, общее содержание кислорода – не более 30 ppm, неметаллические включения – не более 20 мкм.

Технологический контроль чистоты стали

Чистота стали контролируется в ходе всех технологических операций производства стали. Этот контроль включает:

  • время и место для раскисления стали;
  • время и место для легирования стали;
  • длительность и последовательность печных и внепечных обработок стали;
  • перемешивание стали;
  • передача жидкой стали от агрегата к агрегату;
  • конструкция сталелитейных ковшей и методы работы с ними;
  • особенности различных металлургических флюсов и их применение;
  • способы разливки стали.

Примеси в сталях

В сталях всегда присутствуют постоянные, вредные и случайные примеси, так как сталь является многокомпонентным сплавом.

Сера, фосфор и все газы являются вредными примесями, и усилия металлургов всегда направлены на максимальное снижение этих элементов в стали.

Сера. Содержание серы в сталях промышленных марок составляет обычно 0,015…0,050 %. Сера дает с железом соединение FеS, которое образует с железом легкоплавкую эвтектику, (температура плавления 988 °С), обычно располагающуюся вокруг зерен, закристаллизовавшихся ранее этой эвтектики. При горячей механической обработке (ковка, прокатка) эвтектика плавится, что вызывает потерю связи между зернами стали: слиток или поковка разваливается на части. Это явление называется красноломкостью.

Сера снижает механические свойства, особенно ударную вязкость и пластичность (δ и ψ), а также предел выносливости. Она ухудшает свариваемость и коррозионную стойкость.

Фосфор.Содержание фосфора в стали 0,025…0,040 %. Весьма значительно снижает вязкость железа и стали. Особенно заметно проявляется это вредное влияние фосфора при повышенном содержании углерода в стали и при низких температурах. Явление повышенной хрупкости стали при низких температурах называется хладноломкостью. Повышение содержания фосфора на каждую 0,01 % повышает порог хладноломкости на 20…25 °С.

Для некоторых сталей возможно увеличение содержания серы и фосфора для улучшения обрабатываемости резанием. Это было при создании автоматных сталей, из которых на высокопроизводительных станках-автоматах изготовляется крепежный материал (гайки, болты) неответственного назначения, имеющий очень широкое применение в машиностроении. Короткая, хрупкая стружка и чистая поверхность резьбы являются главными положительными качествами автоматных сталей. Так как серы в этих сталях содержится до 0,15…0,20 %, а фосфора до 0,14 %, то такие стали можно отнести к разряду специальных.

Существенным является то, что сера и фосфор при кристаллизации стального слитка сильно ликвируют, в результате чего создаются участки с резко повышенной концентрацией этих вредных элементов по сравнению со средним их содержанием в стали.

Газы (азот, кислород, водород) попадают в сталь при выплавке.

Кислород,соединяясь со многими элементами, присутствующими в стали, образует неметаллические включения, так называемые оксиды (SiO2, А12О3 и др.). Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость. Поэтому необходимо снижать содержание кислорода в стали путем хорошего раскисления и разливки в вакууме, тщательно контролировать структуру стали, идущей на изготовление ответственных изделий.

Читать еще:  Как маркируются углеродистые инструментальные стали?

Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катаных заготовках и поковках флокенов – тонких трещин овальной или округлой формы, имеющих в изломе вид пятен – хлопьев серебристого цвета.

Постоянные примеси

Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.

Содержание марганца не превышает 0,8 %. Марганец,имеющийся в стали, интенсивнее, чем железо, соединяется с серой, образуя весьма тугоплавкое соединение MnS(температура плавления 1620 °С), располагающееся обычно в виде мелких глобулярных включений внутри зерен стали. Следовательно, включенияMnS оказывают менее вредное влияние на сталь, чем включения FeS.

Содержание кремния не превышает 0,4 %. Кремний является раскислителем стали, освобождающим ее от излишков кислорода. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести s0,2. Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке.

Наличие марганца и кремния свыше указанных пределов переводит такие стали в разряд специальных, «легированных».

Случайные примеси – практически любые элементы, случайно попавшие в сталь, например Cr, Ni, Cu, Mo, Al, Ti и др., в количествах, ограниченных для примесей.

Учебные материалы

Содержание постоянных примесей обычно ограничивается следующими верхними пределами: 0,8 % Мn; 0,5 % Si; 0,05 % Р; 0,05 % S. При большем их содержании сталь следует относить к легированным, куда эти элементы введены специально.

Марганец

Его вводят в любую сталь для раскисления:

FeO + Mn -> MnO +Fe,

т.е. для устранения оксида железа. Марганец хорошо растворяется в феррите и цементите. Он повышает прочность стали, практически не снижая пластичности, резко уменьшает красноломкость, т.е. хрупкость при высоких температурах вызванную влиянием серы.

Кремний

Его вводят в сталь для раскисления:

2FeO + Si -> 2Fe + SiO2.

Кремний полностью растворим в феррите; сильно повышает предел текучести стали, что снижает способность стали к пластической деформации. В сталях, предназначенных для холодной штамповки, вытяжки, содержание кремния должно быть минимальное.

Фосфор

Железные руды, топливо, флюсы содержат какое-то количество фосфора, которое в процессе производства чугуна остается в нем в той или иной степени и затем переходит в сталь. Фосфор хорошо растворяется в феррите и аустените, а при высоком содержании образует фосфид Fe3Р (15,62 % Р). Растворяясь в феррите, фосфор искажает кристаллическую решетку и увеличивает пределы прочности и текучести стали, сильно уменьшает пластичность и вязкость; каждые 0,01 % Р повышают порог хладноломкости на 20…25 0 С. Фосфор является вредной примесью в сталях.

Как и фосфор, сера попадает в металл из руд, а также из печных газов — продукт горения топлива (SO2). Сера весьма ограниченно растворима в феррите, и практически любое ее количество образует с железом сернистое соединение — сульфид железа FeS, который входит в состав эвтектики, имеющей температуру плавления 988 0 С. Она располагается преимущественно по границам зерен. При нагреве стали до температуры прокатки, ковки (1000…1200 0 С) эвтектика расплавляется, нарушая связь между зернами. В процессе деформации в этих местах образуются надрывы и трещины. Это явление носит название красноломкости. Введение марганца в сталь уменьшает вредное влияние серы, так как при введении его в жидкую сталь идет образование сульфида марганца, имеющего температуру плавления

FeS + Mn -> MnS + Fe.

Частицы MnS располагаются в виде отдельных включений и при деформации вытягиваются в строчки вдоль прокатки.

Сернистые соединения сильно снижают механические свойства стали при статическом и циклическом нагружении, особенно вязкость, пластичность, предел выносливости. Сера является вредной примесью в сталях.

Азот и кислород

Содержатся в стали в небольших количествах, зависящих от способа производства. Они могут в газообразном состоянии находиться в различных несплошностях , в a-твердом растворе, присутствовать в стали в виде хрупких неметаллических включений: оксидов (FeO, SiO2, Al2O3 и др.) нитридов (Fe2N, Fe4N, Mn4N и др.). Азот, кислород и их соединения резко повышают порог хладноломкости, уменьшают ударную вязкость, понижают сопротивление хрупкому разрушению.

Водород

С железом гидридов не образует. Поглощенный при выплавке водород не только охрупчивает сталь, но приводит к образованию флокенов- тонких трещин овальной или округлой формы. Кроме того, водород в металл может попасть в процессе нанесения гальванических покрытий, сварке, при контакте с водородсодержащими средами. Для снижения водородной хрупкости (удаления водорода) металл нагревается до 150…180 0 С, желательно в вакууме при давлении порядка 10 -2 …10 -3 мм рт. ст.

Улучшение качества стали

Для удаления из жидкой стали растворенных в ней газов и неметаллических включений применяют ее вакуумную обработку. Для этого ковш с жидкой сталью помещают в герметически закрытую камеру, где создается разряжение 267…667 Па (2…5 мм рт. ст.). Бурно выделяющиеся газы увлекают с собой и выносят из металла неметаллические включения. В течение 10…15 минут количество растворенных газов уменьшается в 3…5 раз, количество неметаллических включений- в 2…3 раза.

Читать еще:  Сталь горячего цинкования для заземления

Для защиты металла от окисления разливку стали ведут в инертной атмосфере, например, аргона, под слоем синтетического шлака. Для получения сталей особо высокого качества применяют электрошлаковый переплав (ЭШП), плазменнодуговой переплав, электроннолучевой переплав, электродуговой вакуумный переплав. Металл хорошо очищается (рафинируется) от газов и неметаллических включений обработкой шлаком и направленной кристаллизацией жидкого расплава, созданием глубокого вакуума.

Уважаемые студенты!
Специалисты нашего сайта готовы оказать помощь в учёбе по разным предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Влияние углерода и примесей на свойства сталей

Углеродистые стали являются основными. Их свойства определяются количеством углерода и содержанием примесей, которые взаимодействуют с железом и углеродом.

Влияние углерода на свойства сталей показано на рис. 1.8.

Рис.1.8. Влияние углерода на свойства сталей

С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного.

Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог хладоломкости и снижает ударную вязкость.

Повышаются электросопротивление и коэрцитивная сила, снижаются магнитная проницаемость и плотность магнитной индукции.

Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.

В сталях всегда присутствуют примеси, которые делятся на четыре группы:

1. Постоянные примеси: кремний, марганец, сера, фосфор.

Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.

Содержание марганца не превышает 0,5…0,8%. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки.

Содержание кремния не превышает 0,35…0,4%. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, σ0.2. Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке.

Содержание фосфора в стали 0,025…0,045%. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности и предел текучести, но снижает пластичность и вязкость. Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую 0,01% повышает порог хладоломкости на 20…25 o С. Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость. Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием.

Присутствие серы ведет к уменьшению пластичности, свариваемости и коррозионной стойкости. Содержание серы в сталях составляет 0,025…0,06 %. Сера – вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение – сульфид серы FeS, которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления 988 o С. При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зернами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление красноломкости.

Красноломкость повышение хрупкости при высоких температурах.

Сера снижает механические свойства, особенно ударную вязкость и пластичность, а так же предел выносливости. Она ухудшают свариваемость и коррозионную стойкость.

2. Скрытые примеси— газы (азот, кислород, водород) – попадают в сталь при выплавке.

Азот и кислород находятся в стали в виде хрупких неметаллических включений: окислов (FeO, SiO2, Al2O3) нитридов (Fe2N), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах).

Примеси внедрения (азот N, кислород О) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость.

Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов.

Флокены – тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен – хлопьев серебристого цвета.

Металл с флокенами нельзя использовать в промышленности, при сварке образуются холодные трещины в наплавленном и основном металле.

Если водород находится в поверхностном слое, то он удаляется в результате нагрева при 150…180 о С , лучше в вакууме

10 2 …10 3 мм рт. ст.

Для удаления скрытых примесей используют вакуумирование.

3. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали — легированные сталями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector
Для любых предложений по сайту: [email protected]