E-polirovka.ru


3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Скважность импульса что это такое?

Коэффициент заполнения импульсного сигнала. Скважность импульса прямоугольной / сложной формы. Симметричные сигналы

Определение коэффициента заполнения, скважности, обобщенного коэффициента заполнения. Значения для синусоидального и треугольного сигналов. Применение в расчетах. Отношение среднего арифметического значения напряжения к действующему (эффективному) (10+)

Коэффициент заполнения импульсного сигнала. Скважность — Определение

Коэффициент заполнения — прямоугольный импульс

[Коэффициент заполнения] = [Длительность импульса (L), с] / [Период следования импульсов (T), с]

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Таким образом коэффициент заполнения — величина безразмерная. Она получается делением секунд на секунды. Иногда удобно измерять коэффициент заполнения в процентах. Тогда нужно приведенное в определении отношение умножить на 100%.

Как мы видим, чем короче импульс, тем меньше коэффициент заполнения. Если длительность импульса стремится к нулю, то и коэффициент заполнения стремится к нулю.

Скважность — прямоугольный импульс

[Скважность] = [Период следования импульсов (T), с] / [Длительность импульса (L), с]

Скважность — величина, обратная коэффициенту заполнения.

Чем короче импульс, тем больше скважность. Если длительность импульса стремится к нулю, то скважность стремится к бесконечности.

Обобщенный коэффициент заполнения, скважность

Для сложных сигналов также можно ввести понятия коэффициента заполнения и скважности. Будем называть их обобщенными.

[Обобщенный коэффициент заполнения] = [Среднеарифметическое значение напряжения сигнала за период, В] / [Амплитуда сигнала (A), В]

Легко показать, что эта формула для прямоугольных импульсов сводится к приведенной выше.

[Обобщенная скважность] = 1 / [Обобщенный коэффициент заполнения]

Обобщенным коэффициентом заполнения оперируют довольно часто. К понятию обобщенной скважности практически не прибегают.

Симметричные сигналы — коэффициент заполнения полупериода

Для симметричных сигналов описанный выше коэффициент заполнения будет равен нулю, так как среднее арифметическое симметричного сигнала равно нулю. Для анализа симметричных периодических сигналов применяется понятие коэффициента заполнения полупериода. Для его расчета используется формула:

[Обобщенный коэффициент заполнения полупериода] = [Среднеарифметическое значение напряжения сигнала за полупериод, В] / [Амплитуда сигнала (A), В]

Коэффициент заполнения полупериода используется для расчета схем с трансформаторами, катушками индуктивности или конденсаторами. Например, чтобы определить, до какого напряжения за полупериод зарядится конденсатор, нужно посчитать довольно замысловатый интеграл или воспользоваться простой формулой:

[Напряжение на конденсаторе в конце полупериода, В] = [Напряжение на конденсаторе в начале полупериода, В] + [Обобщенный коэффициент заполнения полупериода] * [Амплитуда силы тока, А] * [Длительность полупериода, с]

[Сила тока в катушке индуктивности в конце полупериода, А] = [Сила тока в начале полупериода, А] + [Обобщенный коэффициент заполнения полупериода] * [Амплитуда напряжения, В] * [Длительность полупериода, с]

Обобщенные коэффициенты заполнения для разных распространенных сигналов можно взять из таблиц. Иногда известно не амплитудное, а действующее значение. Тогда полезен будет другой коэффициент: отношение среднего арифметического значения к действующему. С математической точки зрения он равен отношению среднего арифметического к среднему квадратичному.

[Напряжение на конденсаторе в конце полупериода, В] = [Напряжение на конденсаторе в начале полупериода, В] + [Отношение среднего арифметического значения силы тока к действующему] * [Действующее значение силы тока, А] * [Длительность полупериода, с]

[Сила тока в катушке индуктивности в конце полупериода, А] = [Сила тока в начале полупериода, А] + [Отношение среднего арифметического значения напряжения к действующему] * [Действующее значение напряжения, В] * [Длительность полупериода, с]

Для синусоидального сигнала

[Обобщенный коэффициент заполнения полупериода] = 0.637

[Отношение среднего арифметического значения напряжения к действующему] = 0.9

Для треугольного сигнала

[Обобщенный коэффициент заполнения полупериода] = [L, с] / [T, с] / 2

[Отношение среднего арифметического значения напряжения к действующему] = [Корень квадратный из 3] * [L, с] / [T, с] / 2

В литературе нередко понятием ‘Коэффициент заполнения’ обозначают то коэффициент заполнения периода, то коэффициент заполнения полупериода, то отношение среднего значения к действующему. Так что, о чем идет речь, приходится понимать по контексту.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Конструирование (проектирование и расчет) источников питания и преобра.
Разработка источников питания и преобразователей напряжения. Типовые схемы. Прим.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Полумостовой импульсный стабилизированный преобразователь напряжения, .
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание.

Скважность импульсов

Электрические сигналы, которые имеют только 2 допустимых состояния «0» или «1», что соответствует уровню напряжения 0.2 вольта (В) или 4.9В, называются импульсными. В основном, оперируют с последовательностью импульсов. Одна из простейших последовательностей импульсов показа на рис. ниже.

Общая информация

К основным параметрам последовательности импульсов относятся:

  • l амплитуда импульса – Um,
  • l длительность импульса – tu,
  • l длительность паузы – tn,
  • l период следования T или частота f = 1/T следования.

Если длительность tu всех импульсов, входящих в состав последовательности, и всех пауз tn постоянна в течение времени, то она называется периодической.

Важным параметром периодического импульсного процесса является скважность импульсов S. Скважность импульсовэто отношение периода следования к длительности импульса, рассчитывается по формуле:

Эффективность S при управлении устройства достигается при стабильной частоте сигнала. Иногда используют обратную величину Dкоэффициент заполнения, рассчитывается по формуле:

При равенстве tu и tn скважность равна 2, и сигнал называется меандром. S и D – безразмерные величины, так как время делится на время. В цифровых устройствах применяются импульсы различной формы. Формой импульса называется графическое изображение закона изменения импульсного напряжения во времени. На рис. ниже показаны формы сигналов:

  • а – прямоугольная,
  • б – трапецеидальная,
  • в – экспоненциальная,
  • г – колокольная,
  • д – ступенчатая,
  • е – пилообразная.

Техническая характеристика формы импульсов связана с количественной оценкой основных параметров импульса, свойств отдельных его участков, которые играют разную роль при воздействии импульса на устройство. На рис. выше изображены идеализированные формы импульса. Из-за переходных процессов в устройствах (формирования и усиления импульсов) существует реальная форма, например, прямоугольного импульса (рис. ниже).

Читать еще:  Как добыть серебро в домашних условиях?

Основные параметры импульса – это:

  • l Размах импульса – Um,
  • l Длительность импульса – tи,
  • l Длительность переднего фронта – tф,
  • l Длительность заднего фронта – tсп,
  • l Спад вершины – ΔU,
  • l Размах выброса заднего фронта – Um обр,
  • l Длительность выброса заднего фронта – tи обр.

Указанные величины считываются между уровнями 0.1 и 0.9 от амплитуды в микросекундах, в зависимости от частоты сигнала. Амплитудные – в вольтах.

Определить параметры импульсного сигнала можно с помощью осциллографа, частотомера или мультиметра.

Управление скважностью

С помощью цифровых сигналов происходит управление разнообразными устройствами. Первое применение такого управления использовалось при передаче информации кодом Морзе. Сигнал передаётся короткими и длинными импульсами. Каждой букве соответствует определённый набор точек и тире. Сегодня этот метод управления используется для ШИМ-управления.

При изменении D (коэффициент заполнения) от 0 до 1 добиваются нужного напряжения на выходе электронного устройства. Таким образом, можно управлять оборотами двигателя, освещением, яркостью дисплея и т.д. При формировании прямоугольных импульсов используются специально разработанные микросхемы, например, NE555, NL494, КР1006ВИ1, IR2153, и микроконтроллеры: Arduino, AVR, SG2525A.

Для обеспечения надёжной работы управляемых устройств к параметрам импульсного сигнала предъявляются жестокие требования по их стабильности. Это достигается применением кварцевого генератора и хорошей переходной характеристикой схемы формирования управляющих импульсов.

Видео

Скважность

Сква́жность (в физике, электронике) — один из классификационных признаков импульсных систем, определяющий отношение его периода следования (повторения) к длительности импульса. Величина, обратная скважности и часто используемая в англоязычной литературе, называется коэффициентом заполнения (англ. Duty cycle ).

Таким образом, для импульсного сигнала справедливы следующие соотношения:

,

где S — скважность, D — коэффициент заполнения, T — период импульсов, — длительность импульса.

Скважность определяет отношение пиковой мощности импульсной установки (например, передатчика радиолокационной станции) к её средней мощности и таким образом является важным показателем работы импульсных систем. В устройствах и системах дискретной передачи и обработки информации недостаточно высокая скважность может приводить к искажению информации.

Частое применение в практике находит сигнал со скважностью, равной двум — меандр.

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

  • Остров (Гатчинский район Ленинградской области)
  • Terrorfakt

Смотреть что такое «Скважность» в других словарях:

СКВАЖНОСТЬ — отношение периода следования (повторения) электрических импульсов к их длительности. Скважность определяет соотношение между пиковой и средней мощностью импульсов напряжения или тока, что необходимо учитывать при выборе режима эксплуатации… … Большой Энциклопедический словарь

скважность — пористость, скважистость Словарь русских синонимов. скважность сущ., кол во синонимов: 3 • пористость (12) • … Словарь синонимов

Скважность — (a. porosity; н. Porositat, Durchlassigkeit; ф. porosite; и. porosidad) совокупность пор, трещин, каналов и др. пустот в горн. массиве независимо от их форм и размеров. Pазличают Пористость г. п., Трещиноватость г. п. и т.п. Горная… … Геологическая энциклопедия

СКВАЖНОСТЬ — СКВАЖНОСТЬ, скважности, мн. нет, жен. (физ., геол.). Наличие скважин, отверстий, пор, делающее вещество проницаемым для жидкостей и газов. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

скважность — СКВАЖИСТЫЙ, ая, ое; ист и (спец.) СКВАЖНЫЙ, ая, ое. Имеющий скважины (в 3 знач.). Скважистая порода. Скважистый грунт. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

СКВАЖНОСТЬ — (см. ИМПУЛЬСНЫЙ СИГНАЛ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

скважность — Отношение времени смены кадров ко времени экспонирования одного кадра. Обозначение M [ГОСТ 24449 80] Тематики регистрация фотографическая высокоскоростная … Справочник технического переводчика

СКВАЖНОСТЬ — отношение периода следования электрических импульсов к их длительности … Большая политехническая энциклопедия

скважность — 3.15 скважность: отношение периода импульсов к длительности импульса. Источник: ГОСТ Р 54073 2010: Системы электроснабжения самолетов и вертолетов. Общие требования и нормы качества электроэнергии … Словарь-справочник терминов нормативно-технической документации

скважность — отношение периода следования (повторения) электрических импульсов к их длительности. Скважность определяет соотношение между пиковой и средней мощностью импульсов напряжения или тока, что необходимо учитывать при выборе режима эксплуатации… … Энциклопедический словарь

Скважность импульсов

Общеизвестно, что регулировать количество оборотов электродвигателя можно периодическим включением и отключением его от энергосети, кроме того при изменении времени включения и отключения можно задавать дополнительные параметры скорости. Это явление характерно не только для электродвигателя – его действие можно заметить во всех потребителях тока, способных запасать энергию, иначе говоря, инерционных системах.

Принцип широтно-импульсной модуляции основан именно на этом эффекте, он нашёл себе достаточно широкое применение при управлении электротехническими устройствами и источниками освещения, где требуется циклическая подача энергии. В английском языке этот принцип получил название – Pulse-Width Modulation.

Что такое ШИМ

Что такое электрический импульс? Это резкий конечный всплеск напряжения в системе. Поскольку он конечен, то он имеет начало, обычно называемое фронтом, ширину и спад, его окончание, период.

Такие всплески можно охарактеризовать следующими параметрами:

  • периодичность – это временной период до фронта следующего импульса, обозначается литерой T;
  • скважность – отношение периода к ширине, это величина безразмерная и выражается чаще всего в процентах, на схеме можно обозначить участок между спадом первого импульса и фронтом нового, обозначается литерой S;
  • частота сигнала – количество всплесков за определённый промежуток времени, величина, обратная периоду колебаний;
  • ширина импульса – период времени, в течение которого его амплитуда стабильна;
  • коэффициент заполнения – значение, обратное скважности, обычно обозначается в формулах литерой t.

Таким образом, скважность импульса – это соотношение:

Благодаря этому, широтно-импульсная модуляция позволяет управляемо изменять напряжение в системе от нулевого значения до максимальной амплитуды сигнала, это используется для установки оптимальных режимов работы инерциальных систем.

Применение

Для формирования прямоугольных колебаний применяется микросхема аналогового типа или чип-контроллер. Сами колебания управляют только нагрузкой, идущей от источника тока. Подключение производится через ключевую схему на полупроводнике. Ключ имеет всего два состояния: либо он включён в сеть, либо размыкает её.

Читать еще:  Как плавить бронзу в домашних условиях?

Грубо говоря, все зависит от характеристик колебаний. Так, если светильник подключен через подобную схему, то при низкой частоте работы устройства лампа будет мигать с определенной периодичностью, но при превышении её сверх 50Гц в человеческих глазах отдельные всплески света сольются в одно ровное свечение. Это особенность человеческого глаза, который не улавливает колебания свыше этого значения. Но и яркость свечения можно регулировать. Чем ниже коэффициент заполнения, а, следовательно, и значение, обратное ему, тем меньше яркость свечения источника.

Аналогичный пример можно использовать и с двигателем постоянного тока, под управлением широтно-импульсного регулятора. При этом низкая частота приведёт к снижению оборотов двигателя, в то время как высокая – к его эффективной работе. Для её достижения используются ключи-полупроводники, обладающие значительным быстродействием и низким коэффициентом проводимости, так как в противном случае возможно запаздывание сигнала.

При необходимости сигналы схемы импульсного регулятора можно усреднять, для этого используются фильтры низких частот, но при подключении двигателя с большой механической инерцией и хорошим значением индуктивности. В этом случае снижение амплитуды и частоты происходит самопроизвольно.

Скважность, а также её обратное значение зависят от уровня моделирующего сигнала, частота таких устройств определяется частотой дублирующего генератора, подающего дополнительный сигнал.

Генератор для получения скважности

Видео

Zombie47 › Блог › Что такое Скважность, ШИМ, Duty Cycle% ?

Тема названа так чтобы в поисковиках людям было легче найти ответ.
Сразу хочу предупредить я дилетант и могу допустить много не точностей формулировок и определений, если что меня поправят и я поправлю статью. И статья ориентирована на таких же дилетантов как и я.
Дело в том что про эти понятия много где написано. Но почитав всякие умные статьи скорее всего вы хрен чего поймете как и я =)
Пока ко мне в руки не попал штатный соленоид вестгейта Антона и пока я не стал изучать как диагностировать его поломку по мануалу я так и не понимал что такое Duty Cycle (цикл наполнения) и тд.
AVCS клапана управляются по Duty объяснял мне друг электрик =) Только понимания это не давало.
Соленоид вестгейта так же управляется по Duty.
По слухам я представил картину что это клапан который меняет свою пропускную способность тем самым стравливая воздух и прикрывая калитку вестгейта.
Оказывается нихрена подобного он не умеет.
У клапана есть всего два положения вкл +12 вольт (клапан полностью открыт) и выкл 0 вольт (клапан полностью закрыт).

Так вот управление по Duty или скважность это щелканье тумблера вкл выкл вкл выкл, а чтобы понять как щелкать компу нужно знать сколько времени держать в положении вкл и сколько времени держать в положении выкл.
Например вкл 0.1 секунда держим и жмем выкл и держим 0.3 секунды и опять вкл держим 0.1 секунду и так далее, так вот Duty Cycle (цикл наполнения) или скважность это отношение этих длительностей друг к другу. Причем скважность это отношение одного к другому, а Duty Cycle (цикл наполнения) это обратнопропорциональная величина, Тоесть сути это не меняет.

Ну теперь когда знаете что это такое можно уже почитать другие статьи по управлению наддувом и тд и тп =)

Комментарии 10

Какая всё таки обычно частота ШИМ сигнала на управлении VGT турбины?

не знаю вроде addelectronics замерял ) но могу ошибаться

Спрошу у него, спасибо

Я так понял в субе все на ШИМ завязано.

да нет. клапана avcs шим, соленойд шим.
скорость импульсы
обороты импульсы

Суть ты уловил) Duty — это скважность.
Соленоид питается ШИМ-сигналом, но питается им не по прямому назначению широтно-импульсной модуляции, а только для того, чтобы соленоид не перегревался. Сама же работа соленоида, как клапана, один в один повторяет сущность ШИМ. Обычно в буст-контроллерах соленоид работает на частоте около 30гц (а частота ШИМ сигнала обычно около 300гц!), это значит, что он открывается и закрывается 30 раз за секунду, т.е. один рабочий цикл (Duty полное) длится 1/30 секунды, если принять 1/30 секунды за 100%, то 50% от скважности — это 1/15 секунды. Так вот Duty — это процентное соотношение времени открытия соленоида к времени полного цикла. В конкретном случае, если Duty 100% — соленоид открыт все время, т.е. 1/30 секунды, и в конце цикла он не закрывается и начинается следующий цикл, в итоге соленоид просто открыт постоянно. Если делаем Duty 50% — соленоид половину времени цикла будет открыт, а половину закрыт, и пропустит в 2 раза меньше воздуха.

Я, когда делал самодельный электронный буст-контроллер, сталкивался с проблемами, когда Duty 100% по сути было равно Duty 90% к примеру, когда соленоид просто залипал в открытом положении. Это означает большую частоты цикла. Для моего соленоида частота цикла была максимальна 30гц, быстрее — он просто залипал на крайних режимах. Чем больше частота цикла — тем точнее регулировка наддува.

Но фишка в том, что в буст-контроллерах зачастую Duty обзывают не скважность, а некий коэффициент чувствительности, т.к. алгоритм работы буст контроллера немного сложнее, чем просто задать постоянную скважность соленоиду на частоте 30гц. Если подумать, то станет ясно, что на низких оборотах двигателя скважность напрямую влияет на скорость раскручивание турбины и на интенсивность пинка под зад, на средних оборотах скважность должна занижаться, т.к. это зона передувов, когда турбина выходит на максимальную эффективность своей работы, на высоких оборотах — скважность опять должна увеличиваться, т.к. зачастую трубины ставят маленькие и под отсечку они сдуваются.

Расчет скважности электронным буст-контроллером производится каждый цикл, в моем примере раз в 1/30 секунды. У контроллера должна быть обратная связь — как минимум датчик давления в ВК. У крутых буст контроллеров так же бывает связь с оборотами двигателя, положением дросселя, воткнутой передачей, скоростью авто, температурой во ВК, датчиком детонации и т.д.
Расчет текущего Duty можно получить по формуле:
Duty = (Boost — BoostMin) * (DutyMax — DutyMin) / (BoostMax+Coeff — BoostMin) + DutyMin
Где:
Duty — рассчитываемая скважность на текущий цикл
Boost — текущее давление наддува (обычно в паскалях для целочисленности)
BoostMin — Заранее известный буст при Duty = DutyMin
BoostMax — Заранее известный буст при Duty = DutyMax
Coeff — Коэффицент, влияющий на грубость работы контроллера. Если сделать большим — будет плавать буст, маленьким — передувать.

Читать еще:  Как правильно запрессовывать сайлентблоки в рычаг подвески?

К примеру в штатном буст контроллере машин Subaru есть карта Duty, в которой с завода для конкретной турбины прописаны значения Duty, необходимые для конкретного давления при конкретном положении дросселя и оборотах двигателя. Таблица с измерениями Обороты и Положение ДЗ. Так же есть такая же таблица, но со значениями желаемого наддува. Таблицы не точные, примерно по 7-8 столбцов и строк, и промежуточные значения рассчитываются методом интерполяции. Так же есть поправочные коэффиценты от температуры в ВК и текущего атмосферного давления.

«Я, когда делал самодельный электронный буст-контроллер, сталкивался с проблемами, когда Duty 100% по сути было равно Duty 90% к примеру, когда соленоид просто залипал в открытом положении.» не совсем понял эту фразу.
Как считаете по какому закону идет управление тем же соленойдом вестгейта? (П, ПИ, ПД, ПИД цифровые)

Суть ты уловил) Duty — это скважность.
Соленоид питается ШИМ-сигналом, но питается им не по прямому назначению широтно-импульсной модуляции, а только для того, чтобы соленоид не перегревался. Сама же работа соленоида, как клапана, один в один повторяет сущность ШИМ. Обычно в буст-контроллерах соленоид работает на частоте около 30гц (а частота ШИМ сигнала обычно около 300гц!), это значит, что он открывается и закрывается 30 раз за секунду, т.е. один рабочий цикл (Duty полное) длится 1/30 секунды, если принять 1/30 секунды за 100%, то 50% от скважности — это 1/15 секунды. Так вот Duty — это процентное соотношение времени открытия соленоида к времени полного цикла. В конкретном случае, если Duty 100% — соленоид открыт все время, т.е. 1/30 секунды, и в конце цикла он не закрывается и начинается следующий цикл, в итоге соленоид просто открыт постоянно. Если делаем Duty 50% — соленоид половину времени цикла будет открыт, а половину закрыт, и пропустит в 2 раза меньше воздуха.

Я, когда делал самодельный электронный буст-контроллер, сталкивался с проблемами, когда Duty 100% по сути было равно Duty 90% к примеру, когда соленоид просто залипал в открытом положении. Это означает большую частоты цикла. Для моего соленоида частота цикла была максимальна 30гц, быстрее — он просто залипал на крайних режимах. Чем больше частота цикла — тем точнее регулировка наддува.

Но фишка в том, что в буст-контроллерах зачастую Duty обзывают не скважность, а некий коэффициент чувствительности, т.к. алгоритм работы буст контроллера немного сложнее, чем просто задать постоянную скважность соленоиду на частоте 30гц. Если подумать, то станет ясно, что на низких оборотах двигателя скважность напрямую влияет на скорость раскручивание турбины и на интенсивность пинка под зад, на средних оборотах скважность должна занижаться, т.к. это зона передувов, когда турбина выходит на максимальную эффективность своей работы, на высоких оборотах — скважность опять должна увеличиваться, т.к. зачастую трубины ставят маленькие и под отсечку они сдуваются.

Расчет скважности электронным буст-контроллером производится каждый цикл, в моем примере раз в 1/30 секунды. У контроллера должна быть обратная связь — как минимум датчик давления в ВК. У крутых буст контроллеров так же бывает связь с оборотами двигателя, положением дросселя, воткнутой передачей, скоростью авто, температурой во ВК, датчиком детонации и т.д.
Расчет текущего Duty можно получить по формуле:
Duty = (Boost — BoostMin) * (DutyMax — DutyMin) / (BoostMax+Coeff — BoostMin) + DutyMin
Где:
Duty — рассчитываемая скважность на текущий цикл
Boost — текущее давление наддува (обычно в паскалях для целочисленности)
BoostMin — Заранее известный буст при Duty = DutyMin
BoostMax — Заранее известный буст при Duty = DutyMax
Coeff — Коэффицент, влияющий на грубость работы контроллера. Если сделать большим — будет плавать буст, маленьким — передувать.

К примеру в штатном буст контроллере машин Subaru есть карта Duty, в которой с завода для конкретной турбины прописаны значения Duty, необходимые для конкретного давления при конкретном положении дросселя и оборотах двигателя. Таблица с измерениями Обороты и Положение ДЗ. Так же есть такая же таблица, но со значениями желаемого наддува. Таблицы не точные, примерно по 7-8 столбцов и строк, и промежуточные значения рассчитываются методом интерполяции. Так же есть поправочные коэффиценты от температуры в ВК и текущего атмосферного давления.

Sorry, можно смежный вопрос? EJ257 стоковый мозг ДВС.
Если снять фишку соленоида, то Wastegate будет работать в пневмо-механическом аналоговом режиме, без управления через соленоид вакуумной линией. Недодув. Для предотвращения check, в снятую фишку подобрать резистор, из соображений максимального сопротивления (по возможности уменьшить токи, для минимизации нагрева резистора), но чтобы БК воспринимал цепь как исправную и выдавал check.
Вот интересно:
а) каковы четкие параметры (марка) резистора?
б) когда потом назад фишку на соленоид возвратить, то будет передув [гипотетически мозг ДВС «видел» недодув и сигнал на соленоид подавал на открытие вакуума = закрытие клапана Wastegate, а он все равно недодувал (фишка же снята и балластный резистор воткнут), и как бы гипотетически мозг все время подавал сигнал на открытие соленоида]? Или в мозгу ДВС жестко прописаны параметры «точки отсечения» и при возврате фишки на место передува не будет?

Вопрос изучается для возможности заправки 92-95-м бензином при поездке в регионы, слабо затронутые цивилизацией, т.е. 98-й отсутствует. Чтобы потом было легко вернуть все назад в нормальную конфигурацию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector